文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape.

作者信息

Reilly Raymond M, Georgiou Constantine J, Brown Madeline K, Cai Zhongli

机构信息

Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.

Princess Margaret Cancer Centre, Toronto, ON, Canada.

出版信息

EJNMMI Radiopharm Chem. 2024 May 4;9(1):37. doi: 10.1186/s41181-024-00266-y.


DOI:10.1186/s41181-024-00266-y
PMID:38703297
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11069497/
Abstract

BACKGROUND: Radiation nanomedicines are nanoparticles labeled with radionuclides that emit α- or β-particles or Auger electrons for cancer treatment. We describe here our 15 years scientific journey studying locally-administered radiation nanomedicines for cancer treatment. We further present a view of the radiation nanomedicine landscape by reviewing research reported by other groups. MAIN BODY: Gold nanoparticles were studied initially for radiosensitization of breast cancer to X-radiation therapy. These nanoparticles were labeled with In to assess their biodistribution after intratumoural vs. intravenous injection. Intravenous injection was limited by high liver and spleen uptake and low tumour uptake, while intratumoural injection provided high tumour uptake but low normal tissue uptake. Further, [In]In-labeled gold nanoparticles modified with trastuzumab and injected iintratumourally exhibited strong tumour growth inhibition in mice with subcutaneous HER2-positive human breast cancer xenografts. In subsequent studies, strong tumour growth inhibition in mice was achieved without normal tissue toxicity in mice with human breast cancer xenografts injected intratumourally with gold nanoparticles labeled with β-particle emitting Lu and modified with panitumumab or trastuzumab to specifically bind EGFR or HER2, respectively. A nanoparticle depot (nanodepot) was designed to incorporate and deliver radiolabeled gold nanoparticles to tumours using brachytherapy needle insertion techniques. Treatment of mice with s.c. 4T1 murine mammary carcinoma tumours with a nanodepot incorporating [Y]Y-labeled gold nanoparticles inserted into one tumour arrested tumour growth and caused an abscopal growth-inhibitory effect on a distant second tumour. Convection-enhanced delivery of [Lu]Lu-AuNPs to orthotopic human glioblastoma multiforme (GBM) tumours in mice arrested tumour growth without normal tissue toxicity. Other groups have explored radiation nanomedicines for cancer treatment in preclinical animal tumour xenograft models using gold nanoparticles, liposomes, block copolymer micelles, dendrimers, carbon nanotubes, cellulose nanocrystals or iron oxide nanoparticles. These nanoparticles were labeled with radionuclides emitting Auger electrons (In, Tc, I, Pd, Pt, Pt), β-particles (Lu, Re, Re, Y, Au, I) or α-particles (Ac, Bi, Pb, At, Ra). These studies employed intravenous or intratumoural injection or convection enhanced delivery. Local administration of these radiation nanomedicines was most effective and minimized normal tissue toxicity. CONCLUSIONS: Radiation nanomedicines have shown great promise for treating cancer in preclinical studies. Local intratumoural administration avoids sequestration by the liver and spleen and is most effective for treating tumours, while minimizing normal tissue toxicity.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/1aab6c17341e/41181_2024_266_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/f2bd66e14e05/41181_2024_266_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/668f1c1ee51d/41181_2024_266_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/befe5e14b564/41181_2024_266_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/43ea3b932023/41181_2024_266_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/391fb0e02456/41181_2024_266_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/9e320514e306/41181_2024_266_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/d0cb33412be3/41181_2024_266_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/eda8c1c8ff6d/41181_2024_266_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/4a39d7e03001/41181_2024_266_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/1aab6c17341e/41181_2024_266_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/f2bd66e14e05/41181_2024_266_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/668f1c1ee51d/41181_2024_266_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/befe5e14b564/41181_2024_266_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/43ea3b932023/41181_2024_266_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/391fb0e02456/41181_2024_266_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/9e320514e306/41181_2024_266_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/d0cb33412be3/41181_2024_266_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/eda8c1c8ff6d/41181_2024_266_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/4a39d7e03001/41181_2024_266_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/11069497/1aab6c17341e/41181_2024_266_Fig10_HTML.jpg

相似文献

[1]
Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape.

EJNMMI Radiopharm Chem. 2024-5-4

[2]
Treatment of Orthotopic U251 Human Glioblastoma Multiforme Tumors in NRG Mice by Convection-Enhanced Delivery of Gold Nanoparticles Labeled with the β-Particle-Emitting Radionuclide, Lu.

Mol Pharm. 2023-1-2

[3]
Y-Labeled Gold Nanoparticle Depot (NPD) Combined with Anti-PD-L1 Antibodies Strongly Inhibits the Growth of 4T1 Tumors in Immunocompetent Mice and Induces an Abscopal Effect on a Distant Non-Irradiated Tumor.

Mol Pharm. 2022-11-7

[4]
Dual-Receptor-Targeted (DRT) Radiation Nanomedicine Labeled with Lu Is More Potent for Killing Human Breast Cancer Cells That Coexpress HER2 and EGFR Than Single-Receptor-Targeted (SRT) Radiation Nanomedicines.

Mol Pharm. 2020-4-6

[5]
Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer.

J Nucl Med. 2016-6

[6]
In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection.

Nucl Med Biol. 2016-12

[7]
Radioimmunotherapy of PANC-1 human pancreatic cancer xenografts in NOD/SCID or NRG mice with Panitumumab labeled with Auger electron emitting, In or β-particle emitting, Lu.

EJNMMI Radiopharm Chem. 2020-11-9

[8]
Local Radiation Treatment of HER2-Positive Breast Cancer Using Trastuzumab-Modified Gold Nanoparticles Labeled with Lu.

Pharm Res. 2017-3

[9]
Dual-Receptor-Targeted Radioimmunotherapy of Human Breast Cancer Xenografts in Athymic Mice Coexpressing HER2 and EGFR Using 177Lu- or 111In-Labeled Bispecific Radioimmunoconjugates.

J Nucl Med. 2016-3

[10]
Au@Pt Core-Shell Nanoparticle Bioconjugates for the Therapy of HER2+ Breast Cancer and Hepatocellular Carcinoma. Model Studies on the Applicability of Pt and Pt Radionuclides in Auger Electron Therapy.

Molecules. 2021-4-3

引用本文的文献

[1]
Radiolabeled Nanogels: From Multimodality Imaging to Combination Therapy of Cancer.

Small Sci. 2025-6-19

[2]
Leveraging Immunological Properties of Nucleic Acid Nanoparticles to Improve Cancer Therapy.

RNA Nanomed. 2025-4

[3]
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications.

Pharmaceutics. 2025-7-14

[4]
Auger electron-emitting EGFR-targeted and non-targeted [Hg]Hg-gold nanoparticles for treatment of glioblastoma multiforme (GBM).

EJNMMI Radiopharm Chem. 2025-7-17

[5]
Lu-Gold Nanohybrids in Radiotherapeutic Approaches Against Cancer.

Small Sci. 2024-12-12

[6]
Preclinical evaluation of [At]At-AuNP-ABDMPL16 for targeted alpha therapy in Melanoma.

Eur J Nucl Med Mol Imaging. 2025-5-20

[7]
Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers.

Pharmaceuticals (Basel). 2025-2-26

[8]
Recent Advances in Metal Oxide and Phosphate Nanomaterials Radiolabeling with Medicinal Nuclides.

ACS Omega. 2024-9-12

[9]
Palladium-103 (Pd/Rh), a promising Auger-electron emitter for targeted radionuclide therapy of disseminated tumor cells - absorbed doses in single cells and clusters, with comparison to Lu and Tb.

Theranostics. 2024-7-8

本文引用的文献

[1]
Synthesis, Characterization, and Therapeutic Efficacy of Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors.

Pharmaceutics. 2023-7-13

[2]
Development of Lu-Cetuximab-PAMAM dendrimeric nanosystem: a novel theranostic radioimmunoconjugate.

J Cancer Res Clin Oncol. 2023-8

[3]
Monte Carlo simulation of gold nanoparticles for X-ray enhancement application.

Biochim Biophys Acta Gen Subj. 2023-4

[4]
Nanomedicine-based commercial formulations: current developments and future prospects.

J Pharm Investig. 2023

[5]
Treatment of Orthotopic U251 Human Glioblastoma Multiforme Tumors in NRG Mice by Convection-Enhanced Delivery of Gold Nanoparticles Labeled with the β-Particle-Emitting Radionuclide, Lu.

Mol Pharm. 2023-1-2

[6]
Toxicity Assessment of [Lu]Lu-iFAP/iPSMA Nanoparticles Prepared under GMP-Compliant Radiopharmaceutical Processes.

Nanomaterials (Basel). 2022-11-25

[7]
Nanomedicines and nanocarriers in clinical trials: surfing through regulatory requirements and physico-chemical critical quality attributes.

Drug Deliv Transl Res. 2023-3

[8]
Y-Labeled Gold Nanoparticle Depot (NPD) Combined with Anti-PD-L1 Antibodies Strongly Inhibits the Growth of 4T1 Tumors in Immunocompetent Mice and Induces an Abscopal Effect on a Distant Non-Irradiated Tumor.

Mol Pharm. 2022-11-7

[9]
Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

Nanomaterials (Basel). 2022-7-20

[10]
90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours.

Nanotechnology. 2022-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索