Suppr超能文献

利用高级统计数据提高基因组关联分析和基因组预测在枣椰果特性上的效率和准确性。

Boosting genome-wide association power and genomic prediction accuracy for date palm fruit traits with advanced statistics.

机构信息

SuSTATability Statistical Solutions, VIC 3081, Australia.

出版信息

Plant Sci. 2024 Jul;344:112110. doi: 10.1016/j.plantsci.2024.112110. Epub 2024 May 2.

Abstract

The date palm is economically vital in the Middle East and North Africa, providing essential fibres, vitamins, and carbohydrates. Understanding the genetic architecture of its traits remains complex due to the tree's perennial nature and long generation times. This study aims to address these complexities by employing advanced genome-wide association (GWAS) and genomic prediction models using previously published data involving fruit acid content, sugar content, dimension, and colour traits. The multivariate GWAS model identified seven QTL, including five novel associations, that shed light on the genetic control of these traits. Furthermore, the research evaluates different genomic prediction models that considered genotype by environment and genotype by trait interactions. While colour- traits demonstrate strong predictive power, other traits display moderate accuracies across different models and scenarios aligned with the expectations when using small reference populations. When designing the cross-validation to predict new individuals, the accuracy of the best multi-trait model was significantly higher than all single-trait models for dimension traits, but not for the remaining traits, which showed similar performances. However, the cross-validation strategy that masked random phenotypic records (i.e., mimicking the unbalanced phenotypic records) showed significantly higher accuracy for all traits except acid contents. The findings underscore the importance of understanding genetic architecture for informed breeding strategies. The research emphasises the need for larger population sizes and multivariate models to enhance gene tagging power and predictive accuracy to advance date palm breeding programs. These findings support more targeted breeding in date palm, improving productivity and resilience to various environments.

摘要

枣椰树在中东和北非的经济中至关重要,为人们提供了必需的纤维、维生素和碳水化合物。由于其多年生的特性和较长的世代时间,理解其特性的遗传结构仍然很复杂。本研究旨在通过利用先前发表的数据,采用先进的全基因组关联 (GWAS) 和基因组预测模型来解决这些复杂性,这些数据涉及果实酸度、糖含量、尺寸和颜色性状。多变量 GWAS 模型鉴定出 7 个 QTL,包括 5 个新的关联,这些关联揭示了这些性状的遗传控制。此外,该研究评估了不同的基因组预测模型,这些模型考虑了基因型与环境和基因型与性状的相互作用。虽然颜色性状具有很强的预测能力,但其他性状在不同模型和场景下的准确性适中,这与使用小参考群体时的预期相符。在设计用于预测新个体的交叉验证时,最佳多性状模型的准确性明显高于所有单性状模型的尺寸性状,但对于其余性状则不然,后者表现出相似的性能。然而,对于所有性状(除了酸度含量),掩蔽随机表型记录的交叉验证策略(即模拟不平衡表型记录)的准确性明显更高。这些发现强调了了解遗传结构对于明智的育种策略的重要性。该研究强调需要更大的群体规模和多变量模型,以提高基因标记能力和预测准确性,从而推进枣椰树的育种计划。这些发现支持在枣椰树中进行更有针对性的培育,提高生产力和对各种环境的适应能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验