Naiisseh Basma, Papasavva Panayiota L, Papaioannou Nikoletta Y, Tomazou Marios, Koniali Lola, Felekis Xenia, Constantinou Constantina G, Sitarou Maria, Christou Soteroula, Kleanthous Marina, Lederer Carsten W, Patsali Petros
Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus.
Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Agios Dometios, Nicosia 2371, Cyprus.
Mol Ther Nucleic Acids. 2024 Mar 30;35(2):102183. doi: 10.1016/j.omtn.2024.102183. eCollection 2024 Jun 11.
β-Thalassemia is brought about by defective β-globin (HBB [hemoglobin subunit β]) formation and, in severe cases, requires regular blood transfusion and iron chelation for survival. Genome editing of hematopoietic stem cells allows correction of underlying mutations as curative therapy. As potentially safer alternatives to double-strand-break-based editors, base editors (BEs) catalyze base transitions for precision editing of DNA target sites, prompting us to reclone and evaluate two recently published adenine BEs (ABEs; SpRY and SpG) with relaxed protospacer adjacent motif requirements for their ability to correct the common splice mutation. Nucleofection of ABE components as RNA into patient-derived CD34 cells achieved up to 90% editing of upstream sequence elements critical for aberrant splicing, allowing full characterization of the on-target base-editing profile of each ABE and the detection of differences in on-target insertions and deletions. In addition, this study identifies opposing effects on splice correction for two neighboring context bases, establishes the frequency distribution of multiple BE editing events in the editing window, and shows high-efficiency functional correction of for our ABEs, including at the levels of RNA, protein, and erythroid differentiation.
β地中海贫血是由β珠蛋白(HBB [血红蛋白亚基β])形成缺陷引起的,在严重情况下,需要定期输血和铁螯合才能存活。造血干细胞的基因组编辑可校正潜在突变,作为一种治愈性疗法。作为基于双链断裂的编辑工具的潜在更安全替代方案,碱基编辑器(BEs)催化碱基转换以精确编辑DNA靶位点,促使我们重新克隆并评估两种最近发表的腺嘌呤碱基编辑器(ABEs;SpRY和SpG),它们对原间隔序列相邻基序的要求较为宽松,以评估其校正常见剪接突变的能力。将ABE组件作为RNA转染到患者来源的CD34细胞中,对异常剪接至关重要的上游序列元件实现了高达90%的编辑,从而能够全面表征每个ABE的靶向碱基编辑图谱,并检测靶向插入和缺失的差异。此外,本研究确定了两个相邻上下文碱基对剪接校正的相反影响,建立了编辑窗口中多个BE编辑事件的频率分布,并展示了我们的ABE在RNA、蛋白质和红细胞分化水平上的高效功能校正。