Chen Kexiang, Xue Hongtu, Shi Qi, Zhang Fan, Ma Qianyun, Sun Jianfeng, Liu Yaqiong, Tang Yiwei, Wang Wenxiu
College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
Food Chem X. 2024 Apr 25;22:101412. doi: 10.1016/j.fochx.2024.101412. eCollection 2024 Jun 30.
Identifying the geographic origin of a wine is of great importance, as origin fakery is commonplace in the wine industry. This study analyzed the mineral elements, volatile components, and metabolites in wine using inductively coupled plasma-mass spectrometry, headspace solid phase microextraction gas chromatography-mass spectrometry, and ultra-high-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry. The most critical variables (5 mineral elements, 13 volatile components, and 51 metabolites) for wine origin classification were selected via principal component analysis and orthogonal partial least squares discriminant analysis. Subsequently, three algorithms-K-nearest neighbors, support vector machine, and random forest -were used to model single and fused datasets for origin identification. These results indicated that fused datasets, based on feature variables (mineral elements, volatile components, and metabolites), achieved the best performance, with predictive rates of 100% for all three algorithms. This study demonstrates the effectiveness of a multi-source data fusion strategy for authenticity identification of Chinese wine.
确定葡萄酒的地理来源非常重要,因为产地造假在葡萄酒行业很常见。本研究使用电感耦合等离子体质谱、顶空固相微萃取气相色谱 - 质谱和超高效液相色谱 - 四极杆 - 高分辨轨道阱质谱分析了葡萄酒中的矿物质元素、挥发性成分和代谢物。通过主成分分析和正交偏最小二乘判别分析选择了用于葡萄酒产地分类的最关键变量(5种矿物质元素、13种挥发性成分和51种代谢物)。随后,使用三种算法——K近邻、支持向量机和随机森林——对单一数据集和融合数据集进行产地识别建模。这些结果表明,基于特征变量(矿物质元素、挥发性成分和代谢物)的融合数据集表现最佳,三种算法的预测率均为100%。本研究证明了多源数据融合策略用于中国葡萄酒真伪鉴定的有效性。