Suppr超能文献

结合稳定同位素、多元素和非靶向代谢组学以及化学计量学来区分生姜(Zingiber officinale Roscoe)的地理来源。

Combining stable isotope, multielement and untargeted metabolomics with chemometrics to discriminate the geographical origins of ginger (Zingiber officinale Roscoe).

机构信息

National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.

National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.

出版信息

Food Chem. 2023 Nov 15;426:136577. doi: 10.1016/j.foodchem.2023.136577. Epub 2023 Jun 7.

Abstract

Ginger (Zingiber officinale Roscoe) is a high-value food and herb worldwide. The quality of ginger is often related to its production regions. In this study, stable isotopes, multiple elements, and metabolites were investigated together to realize ginger origin traceability. Chemometrics showed that ginger samples could be preliminarily separated, and 4 isotopes (δC, δH, δO, and δS), 12 mineral elements (Rb, Mn, V, Na, Sm, K, Ga, Cd, Al, Ti, Mg, and Li), 1 bioelement (%C), and 143 metabolites were the most important variables for discrimination. Furthermore, three algorithms were introduced, and the fused dataset based on VIP features led to the highest accuracies for origin classification, with predictive rates of 98% for K-nearest neighbor and 100% for support vector machine and random forest. The results demonstrated that isotopic, elemental, and metabolic fingerprints were useful indicators for the geographical origins of Chinese ginger.

摘要

姜(Zingiber officinale Roscoe)是一种在全球范围内具有高价值的食品和草药。姜的质量通常与其生产地区有关。在这项研究中,我们一起研究了稳定同位素、多种元素和代谢物,以实现姜的产地溯源。化学计量学表明,姜样品可以初步分离,4 种同位素(δC、δH、δO 和 δS)、12 种矿物质元素(Rb、Mn、V、Na、Sm、K、Ga、Cd、Al、Ti、Mg 和 Li)、1 种生物元素(%C)和 143 种代谢物是区分的最重要变量。此外,引入了三种算法,基于 VIP 特征的融合数据集导致对产地分类的最高准确性,K-最近邻的预测率为 98%,支持向量机和随机森林的预测率为 100%。结果表明,同位素、元素和代谢指纹图谱是鉴别中国姜产地的有用指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验