Munoz-Macho Adolfo Antonio, Dominguez-Morales Manuel Jesus, Sevillano-Ramos Jose Luis
Computer Architecture and Technology Department, University of Seville, Avda. Reina Mercedes s/n. C.P., 41012 Sevilla, Spain.
Performance and Medical Department, RCD Mallorca SAD, Camí dels Reis, s/n, 07011 Palma, Illes Balears, Spain.
Data Brief. 2024 Apr 23;54:110444. doi: 10.1016/j.dib.2024.110444. eCollection 2024 Jun.
This paper aims to provide a comprehensive and innovative 12-lead electrocardiogram (ECG) dataset tailored to understand the unique needs of professional football players. Other ECG datasets are available but collected from common people, normally with diseases confirmed, while it is well known that ECG characteristics change in athletes and elite players as a result of their intense long-term physical training. This initiative is part of a broader research project employing machine learning (ML) to analyse ECG data in this athlete population and explore them according to the International criteria for ECG interpretation in athletes. The dataset is generated through the establishment of a prospective observational cohort consisting of 54 male football players from La Liga, representing a UEFA Pro-level team. Named the Pro-Football 12-lead Resting Electrocardiogram Database (PF12RED), it comprises 163 10-s ECG recordings, offering a detailed examination of the at-rest heart activity of professional football athletes. Data collection spans five phases over multiple seasons, including the 2018-2019 postseason, the 2019-20 preseason, the 2020-21 preseason, and the 2021-22 preseason. Athletes undergo medical evaluations that include a 10-s resting 12-lead ECG performed with General Electric's USB-CAM 14 module (https://co.services.gehealthcare.com/gehcstorefront/p/900995-002), with data saved using General Electric's CardioSoft V6.73 12SL V21 ECG Software. (https://www.gehealthcare.es/products/cardiosoft-v7) The data collection adheres to ethical principles, with clearance granted by the Autonomous Community of Andalusia Ethics Committee (Spain) under protocol number 1573-N-19 in December 2019. Participants provide informed consent, and data sharing is permitted following anonymization. The study aligns with the Declaration of Helsinki and adheres to the recommendations of the International Committee of Medical Journal Editors (ICMJE). The generated dataset serves as a valuable resource for research in sports cardiology and cardiac health. Its potential for reuse encompasses:1.International Comparison: Enabling cross-regional comparisons of cardiac characteristics among elite football players, enriching international studies.2.ML Model Development: Facilitating the development and refinement of machine learning models for arrhythmia detection, serving as a benchmark dataset.3.Validation of Diagnostic Methods: Allowing the validation of automatic diagnostic methods, contributing to enhanced accuracy in detecting cardiac conditions.4.Research in Sports Cardiology: Supporting future investigations into specific cardiac adaptations in elite athletes and their relation to cardiovascular health.5.Reference for Athlete Protection Policies: Influencing athlete protection policies by providing data on cardiac health and suggesting guidelines for medical assessments.6.Health Professionals Training: Serving as a training resource for health professionals interested in interpreting ECGs in sports contexts.7.Tool and Application Development: Facilitating the development of tools and applications related to the visualization, simulation and analysis of ECG signals in athletes.
本文旨在提供一个全面且创新的12导联心电图(ECG)数据集,以满足了解职业足球运动员独特需求的目的。其他心电图数据集虽有,但均收集自普通人,且通常已确诊患有疾病,然而众所周知,由于长期高强度的体育训练,运动员和精英球员的心电图特征会发生变化。该项目是一个更广泛研究项目的一部分,该研究项目运用机器学习(ML)分析这一运动员群体的心电图数据,并根据国际运动员心电图解读标准进行探究。该数据集是通过建立一个前瞻性观察队列生成的,该队列由来自西甲联赛的一支代表欧足联职业水平的球队的54名男性足球运动员组成。该数据集名为职业足球12导联静息心电图数据库(PF12RED),包含163条10秒的心电图记录,详细检查了职业足球运动员的静息心脏活动。数据收集跨越多个赛季的五个阶段包括2018 - 2019赛季后赛、2019 - 20赛季季前赛、2020 - 21赛季季前赛以及2021 - 22赛季季前赛。运动员接受医学评估,其中包括使用通用电气的USB - CAM 14模块(https://co.services.gehealthcare.com/gehcstorefront/p/900995 - 002)进行10秒的静息12导联心电图检查,数据使用通用电气的CardioSoft V6.73 12SL V21心电图软件(https://www.gehealthcare.es/products/cardiosoft - v7)保存。数据收集遵循伦理原则,于将2019年12月获得西班牙安达卢西亚自治区伦理委员会批准,批准文号为1573 - N - 19。参与者提供了知情同意书,并且在匿名处理后允许数据共享。该研究符合《赫尔辛基宣言》,并遵循国际医学期刊编辑委员会(ICMJE)的建议。生成的数据集是运动心脏病学和心脏健康研究的宝贵资源。其潜在的再利用价值包括:1.国际比较:能够对精英足球运动员的心脏特征进行跨地区比较,丰富国际研究。2.机器学习模型开发:有助于开发和完善用于心律失常检测的机器学习模型,作为一个基准数据集。3.诊断方法验证:允许对自动诊断方法进行验证,有助于提高心脏疾病检测的准确性。4.运动心脏病学研究:支持未来对精英运动员特定心脏适应性及其与心血管健康关系的研究。5.运动员保护政策参考:通过提供心脏健康数据并提出医学评估指南,影响运动员保护政策。6.健康专业人员培训:作为对有兴趣在运动背景下解读心电图的健康专业人员的培训资源。7.工具和应用开发:有助于开发与运动员心电图信号可视化、模拟和分析相关的工具和应用。