Elsemüller Lasse, Schnuerch Martin, Bürkner Paul-Christian, Radev Stefan T
Institute of Psychology, Heidelberg University.
Department of Psychology, University of Mannheim.
Psychol Methods. 2024 May 6. doi: 10.1037/met0000645.
Bayesian model comparison (BMC) offers a principled approach to assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. Additionally, we demonstrate how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
贝叶斯模型比较(BMC)提供了一种有原则的方法来评估竞争计算模型的相对优点,并将不确定性传播到模型选择决策中。然而,由于其高维嵌套参数结构,BMC对于流行的层次模型类别通常难以处理。为了解决这种难处理性,我们提出了一种深度学习方法,用于对任何可以实例化为概率程序的层次模型集执行BMC。由于我们的方法能够实现摊销推理,它允许在任何实际数据应用之前有效地重新估计后验模型概率并快速进行性能验证。在一系列广泛的验证研究中,我们将我们的方法的性能与最先进的桥式抽样方法进行基准测试,并在所有BMC设置中展示了出色的摊销推理。然后,我们通过比较四个由于部分隐式似然而先前被认为对BMC难以处理的层次证据积累模型来展示我们的方法。此外,我们展示了如何利用迁移学习来提高训练效率。我们为所有分析提供了可重现的代码以及我们方法的开源实现。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)