Suppr超能文献

比较基于似然性和无似然性的方法来拟合和比较跨期选择模型。

Comparing likelihood-based and likelihood-free approaches to fitting and comparing models of intertemporal choice.

作者信息

Kvam Peter D, Sokratous Konstantina, Fitch Anderson K, Vassileva Jasmin

机构信息

The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.

University of Florida, Gainesville, FL, USA.

出版信息

Behav Res Methods. 2025 Aug 11;57(9):252. doi: 10.3758/s13428-025-02779-z.

Abstract

Machine learning methods have recently begun to be used for fitting and comparing cognitive models, yet they have mainly focused on methods for dealing with models that lack tractable likelihoods. Evaluating how these approaches compare to traditional likelihood-based methods is critical to understanding the utility of machine learning for modeling and determining what role it might play in the development of new models and theories. In this paper, we systematically benchmark neural network approaches against likelihood-based approaches to model fitting and comparison, focusing on intertemporal choice modeling as an illustrative application. By applying each approach to intertemporal choice data from participants with substance use problems, we show that there is convergence between neural network and Bayesian methods when it comes to making inferences about latent processes and related substance use outcomes. For model comparison, however, classification networks significantly outperformed likelihood-based metrics. Next, we explored two extensions of this approach, using recurrent layers to allow them to fit data with variable stimuli and numbers of trials, and using dropout layers to allow for posterior sampling. We ultimately suggest that neural networks are better suited to fast parameter estimation and posterior sampling, applications to large data sets, and model comparison, while Bayesian MCMC methods should be preferred for flexible applications to smaller data sets featuring many conditions or experimental designs.

摘要

机器学习方法最近已开始用于拟合和比较认知模型,但它们主要集中在处理缺乏易处理似然性的模型的方法上。评估这些方法与传统的基于似然性的方法相比如何,对于理解机器学习在建模中的效用以及确定它在新模型和理论的发展中可能发挥的作用至关重要。在本文中,我们系统地将神经网络方法与基于似然性的方法进行基准测试,以进行模型拟合和比较,重点是将跨期选择建模作为一个示例性应用。通过将每种方法应用于有物质使用问题的参与者的跨期选择数据,我们表明在对潜在过程和相关物质使用结果进行推断时,神经网络方法和贝叶斯方法之间存在趋同。然而,对于模型比较,分类网络明显优于基于似然性的指标。接下来,我们探索了这种方法的两个扩展,使用循环层使其能够拟合具有可变刺激和试验次数的数据,并使用随机失活层进行后验采样。我们最终建议,神经网络更适合快速参数估计和后验采样、应用于大数据集以及模型比较,而贝叶斯MCMC方法则更适合灵活应用于具有许多条件或实验设计的较小数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验