Department of Psychiatry, University of Michigan, Ann Arbor.
Department of Biostatistics, University of Michigan, Ann Arbor.
J Abnorm Psychol. 2021 Nov;130(8):923-936. doi: 10.1037/abn0000707.
Over the past 2 decades Bayesian methods have been gaining popularity in many scientific disciplines. However, to this date, they are rarely part of formal graduate statistical training in clinical science. Although Bayesian methods can be an attractive alternative to classical methods for answering certain research questions, they involve a heavy "overhead" (e.g., advanced mathematical methods, complex computations), which pose significant barriers to researchers interested in adding Bayesian methods to their statistical toolbox. To increase the accessibility of Bayesian methods for psychopathology researchers, this article presents a gentle introduction of the Bayesian inference framework and a tutorial on implementation. We first provide a primer on the key concepts of Bayesian inference and major implementation considerations related to Bayesian estimation. We then demonstrate how to apply hierarchical Bayesian modeling (HBM) to experimental psychopathology data. Using a real dataset collected from two clinical groups (schizophrenia and bipolar disorder) and a healthy comparison sample on a psychophysical gaze perception task, we illustrate how to model individual responses and group differences with probability functions respectful of the presumed underlying data-generating process and the hierarchical nature of the data. We provide the code with explanations and the data used to generate and visualize the results to facilitate learning. Finally, we discuss interpretation of the results in terms of posterior probabilities and compare the results with those obtained using a traditional method. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
在过去的 20 年中,贝叶斯方法在许多科学学科中越来越受欢迎。然而,迄今为止,它们很少成为临床科学正式研究生统计学培训的一部分。尽管贝叶斯方法对于回答某些研究问题可能是一种有吸引力的经典方法替代,但它们涉及大量的“开销”(例如,先进的数学方法,复杂的计算),这对有兴趣将贝叶斯方法添加到其统计工具包中的研究人员构成了重大障碍。为了增加贝叶斯方法对心理病理学研究人员的可及性,本文介绍了贝叶斯推理框架的简要介绍和实施教程。我们首先提供了贝叶斯推理的关键概念入门以及与贝叶斯估计相关的主要实施注意事项。然后,我们演示如何将分层贝叶斯建模 (HBM) 应用于实验心理病理学数据。使用从两个临床组(精神分裂症和双相情感障碍)和健康对照组在心理物理注视感知任务上收集的真实数据集,我们说明了如何使用尊重假定的基础数据生成过程和数据的分层性质的概率函数来对个体反应和组间差异进行建模。我们提供了带有说明的代码以及用于生成和可视化结果的数据,以方便学习。最后,我们根据后验概率讨论了结果的解释,并将结果与使用传统方法获得的结果进行了比较。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。