Er Engin, Chow Tsz Him, Liz-Marzán Luis M, Kotov Nicholas A
Department of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States.
NSF Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States.
ACS Nano. 2024 May 21;18(20):12589-12597. doi: 10.1021/acsnano.3c13228. Epub 2024 May 6.
Circular polarization-resolved Raman scattering methods include Raman optical activity (ROA) and its derivative─surface-enhanced Raman optical activity (SEROA). These spectroscopic modalities are rapidly developing due to their high information content, stand-off capabilities, and rapid development of Raman-active chiral nanostructures. These methods enable a direct readout of the vibrational energy levels of chiral molecules, crystals, and nanostructured materials, making it possible to study complex interactions and the dynamic interfaces between them. They were shown to be particularly valuable for nano- and biotechnological fields encompassing complex particles with nanoscale chirality that combine strong scattering and intense polarization rotation. This perspective dives into recent advancements in ROA and SEROA, their distinction from surface-enhanced Raman scattering, and the potential of these information-rich label-free spectroscopies for the detection of chiral biomolecules.
圆偏振分辨拉曼散射方法包括拉曼光学活性(ROA)及其衍生方法——表面增强拉曼光学活性(SEROA)。由于这些光谱方法具有高信息含量、远距离探测能力以及拉曼活性手性纳米结构的快速发展,它们正在迅速发展。这些方法能够直接读出手性分子、晶体和纳米结构材料的振动能级,从而有可能研究它们之间的复杂相互作用和动态界面。对于纳米技术和生物技术领域而言,这些方法已显示出其特别的价值,这些领域涉及具有纳米级手性的复杂粒子,这些粒子兼具强散射和强偏振旋转特性。本文将深入探讨ROA和SEROA的最新进展、它们与表面增强拉曼散射的区别,以及这些富含信息的无标记光谱技术在检测手性生物分子方面的潜力。