Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EHA, Argentina.
CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
J Chem Inf Model. 2024 May 27;64(10):4047-4058. doi: 10.1021/acs.jcim.4c00478. Epub 2024 May 6.
Machine learning (ML) methods have reached high accuracy levels for the prediction of in vacuo molecular properties. However, the simulation of large systems solely through ML methods (such as those based on neural network potentials) is still a challenge. In this context, one of the most promising frameworks for integrating ML schemes in the simulation of complex molecular systems are the so-called ML/MM methods. These multiscale approaches combine ML methods with classical force fields (MM), in the same spirit as the successful hybrid quantum mechanics-molecular mechanics methods (QM/MM). The key issue for such ML/MM methods is an adequate description of the coupling between the region of the system described by ML and the region described at the MM level. In the context of QM/MM schemes, the main ingredient of the interaction is electrostatic, and the state of the art is the so-called electrostatic-embedding. In this study, we analyze the quality of simpler mechanical embedding-based approaches, specifically focusing on their application within a ML/MM framework utilizing atomic partial charges derived in vacuo. Taking as reference electrostatic embedding calculations performed at a QM(DFT)/MM level, we explore different atomic charges schemes, as well as a polarization correction computed using atomic polarizabilites. Our benchmark data set comprises a set of about 80k small organic structures from the ANI-1x and ANI-2x databases, solvated in water. The results suggest that the minimal basis iterative stockholder (MBIS) atomic charges yield the best agreement with the reference coupling energy. Remarkable enhancements are achieved by including a simple polarization correction.
机器学习 (ML) 方法在预测真空分子性质方面已经达到了很高的精度水平。然而,仅通过 ML 方法(例如基于神经网络势的方法)模拟大型系统仍然是一个挑战。在这种情况下,将 ML 方案集成到复杂分子系统模拟中的最有前途的框架之一是所谓的 ML/MM 方法。这些多尺度方法将 ML 方法与经典力场(MM)相结合,与成功的混合量子力学-分子力学方法(QM/MM)的精神相同。对于这种 ML/MM 方法,关键问题是对 ML 描述的系统区域与 MM 水平描述的区域之间的耦合进行适当描述。在 QM/MM 方案的背景下,相互作用的主要成分是静电的,目前的技术水平是所谓的静电嵌入。在这项研究中,我们分析了基于更简单机械嵌入的方法的质量,特别是关注它们在利用真空原子部分电荷的 ML/MM 框架中的应用。以在 QM(DFT)/MM 水平上执行的静电嵌入计算为参考,我们探索了不同的原子电荷方案,以及使用原子极化率计算的极化修正。我们的基准数据集包括来自 ANI-1x 和 ANI-2x 数据库的约 80k 个小分子结构,它们在水中溶解。结果表明,最小基迭代股东 (MBIS) 原子电荷与参考耦合能的吻合度最佳。通过包含简单的极化修正,可以实现显著的增强。