Suppr超能文献

利用机械嵌入评估机器学习/分子力学终态校正以计算相对蛋白质-配体结合自由能

Evaluation of Machine Learning/Molecular Mechanics End-State Corrections with Mechanical Embedding to Calculate Relative Protein-Ligand Binding Free Energies.

作者信息

Karwounopoulos Johannes, Bieniek Mateusz, Wu Zhiyi, Baskerville Adam L, König Gerhard, Cossins Benjamin P, Wood Geoffrey P F

机构信息

Exscientia, Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K.

出版信息

J Chem Theory Comput. 2025 Jan 28;21(2):967-977. doi: 10.1021/acs.jctc.4c01427. Epub 2025 Jan 3.

Abstract

The development of machine-learning (ML) potentials offers significant accuracy improvements compared to molecular mechanics (MM) because of the inclusion of quantum-mechanical effects in molecular interactions. However, ML simulations are several times more computationally demanding than MM simulations, so there is a trade-off between speed and accuracy. One possible compromise are hybrid machine learning/molecular mechanics (ML/MM) approaches with mechanical embedding that treat the intramolecular interactions of the ligand at the ML level and the protein-ligand interactions at the MM level. Recent studies have reported improved protein-ligand binding free energy results based on ML/MM using ANI-2x with mechanical embedding, arguing that intramolecular interactions like torsion potentials of the ligand are often the limiting factor for accuracy. This claim is evaluated based on 108 relative binding free energy calculations for four different benchmark systems. As an alternative strategy, we also tested a tool that fits the MM dihedral potentials to the ML level of theory. Fitting was performed with the ML potentials ANI-2x and AIMNet2, and, for the benchmark system TYK2, also with quantum-mechanical calculations using ωB97M-D3(BJ)/def2-TZVPPD. Overall, the relative binding free energy results from MM with Open Force Field 2.2.0, MM with ML-fitted torsion potentials, and the corresponding ML/MM end-state corrected simulations show no statistically significant differences in the mean absolute errors (between 0.8 and 0.9 kcal mol). This can probably be explained by the usage of the same MM parameters to calculate the protein-ligand interactions. Therefore, a well-parametrized force field is on a par with simple mechanical embedding ML/MM simulations for protein-ligand binding. In terms of computational costs, the reparametrization of poor torsional potentials is preferable over employing computationally intensive ML/MM simulations of protein-ligand complexes with mechanical embedding. Also, the refitting strategy leads to lower variances of the protein-ligand binding free energy results than the ML/MM end-state corrections. For free energy corrections with ML/MM, the results indicate that better convergence and more advanced ML/MM schemes will be required for applications in computer-guided drug discovery.

摘要

与分子力学(MM)相比,机器学习(ML)势的发展由于在分子相互作用中纳入了量子力学效应,显著提高了计算精度。然而,ML模拟的计算量比MM模拟高出数倍,因此在速度和精度之间存在权衡。一种可能的折衷方案是采用混合机器学习/分子力学(ML/MM)方法,通过机械嵌入,在ML水平处理配体的分子内相互作用,在MM水平处理蛋白质-配体相互作用。最近的研究报告了基于使用ANI-2x和机械嵌入的ML/MM的改进的蛋白质-配体结合自由能结果,认为配体的扭转势等分子内相互作用通常是精度的限制因素。基于对四个不同基准系统的108次相对结合自由能计算对这一说法进行了评估。作为一种替代策略,我们还测试了一种将MM二面角势拟合到ML理论水平的工具。使用ML势ANI-2x和AIMNet2进行拟合,对于基准系统TYK2,还使用ωB97M-D3(BJ)/def2-TZVPPD进行量子力学计算。总体而言,使用开放力场2.2.0的MM、具有ML拟合扭转势的MM以及相应的ML/MM终态校正模拟得到的相对结合自由能结果在平均绝对误差方面没有统计学上的显著差异(在0.8至0.9千卡/摩尔之间)。这可能是由于使用相同的MM参数来计算蛋白质-配体相互作用。因此,对于蛋白质-配体结合,参数化良好的力场与简单的机械嵌入ML/MM模拟相当。在计算成本方面,重新参数化较差的扭转势比采用计算密集的具有机械嵌入的蛋白质-配体复合物的ML/MM模拟更可取。此外,与ML/MM终态校正相比,重新拟合策略导致蛋白质-配体结合自由能结果的方差更低。对于使用ML/MM的自由能校正,结果表明在计算机辅助药物发现应用中需要更好的收敛性和更先进的ML/MM方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验