Bensberg Moritz, Eckhoff Marco, Thomasen F Emil, Bro-Jørgensen William, Teynor Matthew S, Sora Valentina, Weymuth Thomas, Husistein Raphael T, Knudsen Frederik E, Krogh Anders, Lindorff-Larsen Kresten, Reiher Markus, Solomon Gemma C
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland.
Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark.
J Chem Theory Comput. 2025 Aug 26;21(16):8182-8198. doi: 10.1021/acs.jctc.5c00388. Epub 2025 Aug 5.
Binding free energies are key elements in understanding and predicting the strength of protein-drug interactions. While classical free energy simulations yield good results for many purely organic ligands, drugs, including transition metal atoms, often require quantum chemical methods for an accurate description. We propose a general and automated workflow that samples the potential energy surface with hybrid quantum mechanics/molecular mechanics (QM/MM) calculations and trains a machine learning (ML) potential on the QM/MM energies and forces to enable efficient alchemical free energy simulations. To represent systems including many different chemical elements efficiently and to account for the different descriptions of QM and MM atoms, we propose an extension of element-embracing atom-centered symmetry functions for QM/MM data as an ML descriptor. The ML potential approach takes electrostatic embedding and long-range electrostatics into account. We demonstrate the applicability of the workflow on the well-studied protein-ligand complex of myeloid cell leukemia 1 and the inhibitor 19G and on the anticancer drug NKP1339 acting on the glucose-regulated protein 78.
结合自由能是理解和预测蛋白质-药物相互作用强度的关键要素。虽然经典自由能模拟对于许多纯有机配体能产生良好结果,但包括过渡金属原子的药物通常需要量子化学方法才能进行准确描述。我们提出了一种通用且自动化的工作流程,该流程通过混合量子力学/分子力学(QM/MM)计算对势能面进行采样,并基于QM/MM能量和力训练机器学习(ML)势能,以实现高效的炼金术自由能模拟。为了有效地表示包含许多不同化学元素的系统,并考虑QM和MM原子的不同描述,我们提出将用于QM/MM数据的包含元素的原子中心对称函数扩展为一种ML描述符。ML势能方法考虑了静电嵌入和长程静电作用。我们在研究充分的髓系细胞白血病1与抑制剂19G的蛋白质-配体复合物以及作用于葡萄糖调节蛋白78的抗癌药物NKP1339上证明了该工作流程的适用性。