School of Economics, Ocean University of China, Qingdao, 266100, China; Institute of Marine Development, Ocean University of China, Qingdao, 266100, China.
School of Economics, Ocean University of China, Qingdao, 266100, China.
J Environ Manage. 2024 May;359:121005. doi: 10.1016/j.jenvman.2024.121005. Epub 2024 May 5.
With digital technological change and the increasing frequency of interregional innovation links, the spatial correlation and diversity of strategic emerging industries' green innovation efficiency (SEI-GIE) need to be explored in depth. This paper innovatively constructs the SEI-GIE input-output index system under digital economy. The proposed grey model FINGBM(1,1) with ω-order accumulation and weighted initial value optimization realizes effective prediction of 7 input-output indicators of 30 provinces in China from 2021 to 2025. Super-SBM-DEA, gravity model, and social network analysis are applied to explore spatial network structure's dynamic process of SEI-GIE from 12th to 14th Five-Year-Plan period (2011-2025). Empirical results show that (1) Under the effect of digital economy, the SEI-GIE in China generally shows a U-shaped fluctuation trend, in which the growth trend in the central region is obvious, and the western region shows significant fluctuations. (2) The spatial correlation network of SEI-GIE presents a complex and stable center-periphery circle. Particularly, the overall increase in network efficiency highlights the strong small-world characteristics. (3) Beijing, Shanghai, Zhejiang and Jiangsu have always been in the leading core position, with strong influence and control; And Tianjin's core position in the network will decline. Additionally, Guangxi and Chongqing have great potential, but Guangdong needs to strengthen its radiation effect. (4) Block model shows that plate-I (Beijing, Tianjin) receive spatial spillovers from others, while plates-III,IV have significant spillover effects. This study provides theoretical reference for policymakers from a network perspective to promote development of China's SEI-GIE.
随着数字技术变革和区域间创新联系日益频繁,有必要深入探讨战略性新兴产业绿色创新效率(SEI-GIE)的空间相关性和多样性。本文创新性地构建了数字经济下的 SEI-GIE 投入产出指标体系。所提出的带有ω阶累加和加权初始值优化的灰色模型 FINGBM(1,1) 实现了对中国 30 个省份 2021-2025 年 7 个投入产出指标的有效预测。超 SBM-DEA、引力模型和社会网络分析被应用于探索 12 至 14 五年规划期间(2011-2025 年)SEI-GIE 的空间网络结构动态过程。实证结果表明:(1) 在数字经济的影响下,中国的 SEI-GIE 普遍呈现出 U 型波动趋势,其中中部地区的增长趋势明显,西部地区波动较大。(2) SEI-GIE 的空间相关网络呈现出复杂而稳定的中心-外围循环。特别是,网络效率的整体提高凸显了强烈的小世界特征。(3) 北京、上海、浙江和江苏一直处于领先核心地位,具有较强的影响力和控制力;天津在网络中的核心地位将会下降。此外,广西和重庆具有巨大的潜力,但广东需要加强其辐射效应。(4) 块模型表明,板块 I(北京、天津)从其他板块接收空间溢出,而板块 III、IV 具有显著的溢出效应。本研究从网络角度为政策制定者提供了理论参考,以促进中国 SEI-GIE 的发展。