Kweon Jeonguk, Park Bumsu, Kim Dongwook, Chang Sukbok
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea.
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
Nat Commun. 2024 May 6;15(1):3788. doi: 10.1038/s41467-024-48075-w.
In recent decades, strategies involving transition-metal catalyzed carbon-carbon or carbon-heteroatom bond coupling have emerged as potent synthetic tools for constructing intricate molecular architectures. Among these, decarboxylative carbon-nitrogen bond formation using abundant carboxylic acids or their derivatives has garnered notable attention for accessing alkyl- or arylamines, one of key pharmacophores. While several decarboxylative amination methods have been developed, the involvement of a common carboradical intermediate currently poses challenges in achieving stereospecific transformation toward chiral alkylamines. Herein, we present a base-mediated, stereoretentive decarboxylative amidation by harnessing 1,4,2-dioxazol-5-one as a reactive and robust amidating reagent under transition-metal-free ambient conditions, encompassing all types of primary, secondary and tertiary carboxylic acids, thereby providing access to the important pharmacophore, α-chiral amines. This method exhibits high functional group tolerance, convenient scalability, and ease of applicability for N-isotope labeling, thus accentuating its synthetic utilities. Experimental and computational mechanistic investigations reveal a sequence of elementary steps: i) nucleophilic addition of carboxylate to dioxazolone, ii) rearrangement to form a dicarbonyl N-hydroxy intermediate, iii) conversion to hydroxamate, followed by a Lossen-type rearrangement, and finally, iv) reaction of the in situ generated isocyanate with carboxylate leading to C-N bond formation in a stereoretentive manner.
近几十年来,涉及过渡金属催化的碳-碳或碳-杂原子键偶联的策略已成为构建复杂分子结构的有效合成工具。其中,利用丰富的羧酸或其衍生物进行脱羧碳-氮键形成以获得烷基胺或芳基胺(关键药效基团之一)已引起了显著关注。虽然已经开发了几种脱羧胺化方法,但目前常见的碳自由基中间体的参与在实现对手性烷基胺的立体专一性转化方面带来了挑战。在此,我们报道了一种在无过渡金属的环境条件下,以1,4,2-二恶唑-5-酮作为反应性且稳定的酰胺化试剂,通过碱介导的立体保持脱羧酰胺化反应,该反应涵盖了所有类型的伯、仲和叔羧酸,从而提供了获得重要药效基团α-手性胺的途径。该方法具有高官能团耐受性、方便的可扩展性以及易于用于N-同位素标记,从而突出了其合成效用。实验和计算机理研究揭示了一系列基本步骤:i)羧酸盐对二恶唑酮的亲核加成;ii)重排形成二羰基N-羟基中间体;iii)转化为异羟肟酸酯,随后进行Lossen型重排;最后,iv)原位生成的异氰酸酯与羧酸盐反应,以立体保持的方式导致碳-氮键形成。