Suppr超能文献

铋自由基催化氧化还原活性亲电试剂的活化与偶联反应。

Bismuth radical catalysis in the activation and coupling of redox-active electrophiles.

作者信息

Mato Mauro, Spinnato Davide, Leutzsch Markus, Moon Hye Won, Reijerse Edward J, Cornella Josep

机构信息

Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.

Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany.

出版信息

Nat Chem. 2023 Aug;15(8):1138-1145. doi: 10.1038/s41557-023-01229-7. Epub 2023 Jun 1.

Abstract

Radical cross-coupling reactions represent a revolutionary tool to make C(sp)-C and C(sp)-heteroatom bonds by means of transition metals and photoredox or electrochemical approaches. However, the use of main-group elements to harness this type of reactivity has been little explored. Here we show how a low-valency bismuth complex is able to undergo one-electron oxidative addition with redox-active alkyl-radical precursors, mimicking the behaviour of first-row transition metals. This reactivity paradigm for bismuth gives rise to well-defined oxidative addition complexes, which could be fully characterized in solution and in the solid state. The resulting Bi(III)-C(sp) intermediates display divergent reactivity patterns depending on the α-substituents of the alkyl fragment. Mechanistic investigations of this reactivity led to the development of a bismuth-catalysed C(sp)-N cross-coupling reaction that operates under mild conditions and accommodates synthetically relevant NH-heterocycles as coupling partners.

摘要

自由基交叉偶联反应是一种革命性的工具,可通过过渡金属以及光氧化还原或电化学方法来构建C(sp)-C键和C(sp)-杂原子键。然而,利用主族元素实现这类反应活性的研究却很少。在此,我们展示了一种低价铋配合物如何能够与氧化还原活性烷基自由基前体发生单电子氧化加成反应,模仿第一排过渡金属的行为。这种铋的反应活性模式产生了结构明确的氧化加成配合物,其在溶液和固态中均可得到充分表征。所得的Bi(III)-C(sp)中间体根据烷基片段的α-取代基显示出不同的反应模式。对该反应活性的机理研究促成了一种铋催化的C(sp)-N交叉偶联反应的开发,该反应在温和条件下进行,并能兼容具有合成相关性的NH-杂环作为偶联伙伴。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8459/10396954/1d8e2bd63b4d/41557_2023_1229_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验