Department of Breast Surgery, Aga Khan University Hospital.
Department of Histopathology, Aga Khan University Hospital.
J Pak Med Assoc. 2024 Apr;74(4 (Supple-4)):S109-S116. doi: 10.47391/JPMA.AKU-9S-12.
Breast Cancer (BC) has evolved from traditional morphological analysis to molecular profiling, identifying new subtypes. Ki-67, a prognostic biomarker, helps classify subtypes and guide chemotherapy decisions. This review explores how artificial intelligence (AI) can optimize Ki-67 assessment, improving precision and workflow efficiency in BC management. The study presents a critical analysis of the current state of AI-powered Ki-67 assessment. Results demonstrate high agreement between AI and standard Ki-67 assessment methods highlighting AI's potential as an auxiliary tool for pathologists. Despite these advancements, the review acknowledges limitations such as the restricted timeframe and diverse study designs, emphasizing the need for further research to address these concerns. In conclusion, AI holds promise in enhancing Ki-67 assessment's precision and workflow efficiency in BC diagnosis. While challenges persist, the integration of AI can revolutionize BC care, making it more accessible and precise, even in resource-limited settings.
乳腺癌(BC)已经从传统的形态学分析发展到分子谱分析,确定了新的亚型。Ki-67 是一种预后生物标志物,有助于对亚型进行分类,并指导化疗决策。本综述探讨了人工智能(AI)如何优化 Ki-67 评估,提高 BC 管理中检测的精准度和工作流程效率。该研究对当前基于人工智能的 Ki-67 评估状态进行了批判性分析。结果表明,人工智能与标准 Ki-67 评估方法之间具有高度一致性,这突出了人工智能作为病理学家辅助工具的潜力。尽管取得了这些进展,但该综述承认存在一些限制,例如时间限制和研究设计的多样性,强调需要进一步研究来解决这些问题。总之,人工智能在提高 BC 诊断中 Ki-67 评估的精准度和工作流程效率方面具有广阔的前景。尽管存在挑战,但人工智能的整合可以彻底改变 BC 护理,使其在资源有限的情况下更加普及和精准。