Suppr超能文献

基于生活方式问卷的心血管疾病和脑血管疾病预测和因果推断。

Prediction and causal inference of cardiovascular and cerebrovascular diseases based on lifestyle questionnaires.

机构信息

School of Electrical Information Communication Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan.

Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan.

出版信息

Sci Rep. 2024 May 7;14(1):10492. doi: 10.1038/s41598-024-61047-w.

Abstract

Cardiovascular and cerebrovascular diseases (CCVD) are prominent mortality causes in Japan, necessitating effective preventative measures, early diagnosis, and treatment to mitigate their impact. A diagnostic model was developed to identify patients with ischemic heart disease (IHD), stroke, or both, using specific health examination data. Lifestyle habits affecting CCVD development were analyzed using five causal inference methods. This study included 473,734 patients aged ≥ 40 years who underwent specific health examinations in Kanazawa, Japan between 2009 and 2018 to collect data on basic physical information, lifestyle habits, and laboratory parameters such as diabetes, lipid metabolism, renal function, and liver function. Four machine learning algorithms were used: Random Forest, Logistic regression, Light Gradient Boosting Machine, and eXtreme-Gradient-Boosting (XGBoost). The XGBoost model exhibited superior area under the curve (AUC), with mean values of 0.770 (± 0.003), 0.758 (± 0.003), and 0.845 (± 0.005) for stroke, IHD, and CCVD, respectively. The results of the five causal inference analyses were summarized, and lifestyle behavior changes were observed after the onset of CCVD. A causal relationship from 'reduced mastication' to 'weight gain' was found for all causal species theory methods. This prediction algorithm can screen for asymptomatic myocardial ischemia and stroke. By selecting high-risk patients suspected of having CCVD, resources can be used more efficiently for secondary testing.

摘要

心脑血管疾病(CCVD)是日本主要的死亡原因,需要采取有效的预防措施、早期诊断和治疗来减轻其影响。本研究利用特定的健康检查数据,建立了一个诊断模型,用于识别患有缺血性心脏病(IHD)、中风或同时患有这两种疾病的患者。采用五种因果推理方法分析了影响 CCVD 发展的生活方式习惯。该研究纳入了 2009 年至 2018 年在日本金泽市接受特定健康检查的 473734 名年龄≥40 岁的患者,以收集基本身体信息、生活方式习惯以及糖尿病、脂质代谢、肾功能和肝功能等实验室参数的数据。使用了四种机器学习算法:随机森林、逻辑回归、轻梯度提升机和极端梯度提升(XGBoost)。XGBoost 模型表现出优越的曲线下面积(AUC),中风、IHD 和 CCVD 的平均值分别为 0.770(±0.003)、0.758(±0.003)和 0.845(±0.005)。总结了五种因果推理分析的结果,并观察到 CCVD 发病后的生活方式行为变化。所有因果物种理论方法都发现了“减少咀嚼”到“体重增加”的因果关系。该预测算法可以筛选无症状性心肌缺血和中风。通过选择疑似患有 CCVD 的高危患者,可以更有效地利用资源进行二级检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6897/11076536/f88be1f486a7/41598_2024_61047_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验