Suppr超能文献

使用便携式分光光度计和机器学习技术无创预测玛咖粉掺假。

Non-invasive prediction of maca powder adulteration using a pocket-sized spectrophotometer and machine learning techniques.

机构信息

Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Department of Food Science and Technology, Ho Technical University, Ho, Volta Region, Ghana.

出版信息

Sci Rep. 2024 May 7;14(1):10426. doi: 10.1038/s41598-024-61220-1.

Abstract

Discriminating different cultivars of maca powder (MP) and detecting their authenticity after adulteration with potent adulterants such as maize and soy flour is a challenge that has not been studied with non-invasive techniques such as near infrared spectroscopy (NIRS). This study developed models to rapidly classify and predict 0, 10, 20, 30, 40, and 50% w/w of soybean and maize flour in red, black and yellow maca cultivars using a handheld spectrophotometer and chemometrics. Soy and maize adulteration of yellow MP was classified with better accuracy than in red MP, suggesting that red MP may be a more susceptible target for adulteration. Soy flour was discovered to be a more potent adulterant compared to maize flour. Using 18 different pretreatments, MP could be authenticated with R in the range 0.91-0.95, RMSE 6.81-9.16 g/,100 g and RPD 3.45-4.60. The results show the potential of NIRS for monitoring Maca quality.

摘要

鉴别不同品种的玛咖粉(MP),并检测其在与玉米和大豆粉等强掺杂物混合后的真实性,这是一个尚未使用近红外光谱(NIRS)等非侵入性技术进行研究的挑战。本研究使用手持分光光度计和化学计量学方法,为快速分类和预测红、黑、黄三种玛咖品种中 0、10、20、30、40 和 50%w/w 的大豆和玉米粉含量建立了模型。与红玛咖相比,黄玛咖的大豆和玉米掺假分类具有更高的准确性,这表明红玛咖可能更容易受到掺假的影响。与玉米粉相比,大豆粉被发现是一种更有效的掺杂物。使用 18 种不同的预处理方法,MP 的 R 值在 0.91-0.95 范围内,RMSE 为 6.81-9.16 g/100 g,RPD 为 3.45-4.60,表明 NIRS 具有监测玛咖质量的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43b0/11076633/b17a2e5a3b33/41598_2024_61220_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验