Suppr超能文献

基于迁移学习和集成学习的多过程状态自适应软传感器

Adaptive soft sensor based on transfer learning and ensemble learning for multiple process states.

作者信息

Yamada Nobuhito, Kaneko Hiromasa

机构信息

Department of Applied Chemistry School of Science and Technology Meiji University Kawasaki Japan.

出版信息

Anal Sci Adv. 2022 Jun 10;3(5-6):205-211. doi: 10.1002/ansa.202200013. eCollection 2022 Jun.

Abstract

The objective of this study is to develop an adaptive software sensor technique that can predict objective process variables for a target grade in a plant while also considering information related to various other grades. We use a dataset of the target grade as the target domain and those of the other grades as source domains to perform transfer learning. Multiple models or sub-models are constructed by setting a source domain for each grade and changing the number of samples used as the source domain. Furthermore, to prevent the negative transfer, the use of a source domain is automatically judged. In this study, we constructed sub-models using the locally weighted partial least squares approach as an adaptive soft sensor technique. The values of an objective variable were predicted with ensemble learning using sub-models. The effectiveness of the proposed method was verified using a dataset measured in an actual incineration plant, and the proposed method was able to accurately predict the product quality even when the plant was operated in five grades and when a new grade was produced.

摘要

本研究的目的是开发一种自适应软件传感器技术,该技术可以预测工厂中目标等级的客观过程变量,同时还考虑与其他各种等级相关的信息。我们使用目标等级的数据集作为目标域,其他等级的数据集作为源域来进行迁移学习。通过为每个等级设置一个源域并改变用作源域的样本数量,构建多个模型或子模型。此外,为了防止负迁移,自动判断源域的使用情况。在本研究中,我们使用局部加权偏最小二乘法作为自适应软传感器技术构建子模型。使用子模型通过集成学习预测目标变量的值。使用在实际焚烧厂测量的数据集验证了所提方法的有效性,并且所提方法即使在工厂以五个等级运行以及生产新等级时也能够准确预测产品质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bb5/10989538/a201ec647aef/ANSA-3-205-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验