Suppr超能文献

用于域自适应回归的非线性动态传递偏最小二乘法

Nonlinear dynamic transfer partial least squares for domain adaptive regression.

作者信息

Zhao Zhijun, Yan Gaowei, Ren Mifeng, Cheng Lan, Li Rong, Pang Yusong

机构信息

College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.

College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China; Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030032, Shanxi, China.

出版信息

ISA Trans. 2024 Oct;153:262-275. doi: 10.1016/j.isatra.2024.08.002. Epub 2024 Aug 13.

Abstract

Aiming to address soft sensing model degradation under changing working conditions, and to accommodate dynamic, nonlinear, and multimodal data characteristics, this paper proposes a nonlinear dynamic transfer soft sensor algorithm. The approach leverages time-delay data augmentation to capture dynamics and projects the augmented data into a latent space for constructing a nonlinear regression model. Two regular terms, distribution alignment regularity and first-order difference regularity, are introduced during data projection to address data distribution disparities. Laplace regularity is incorporated into the nonlinear regression model to ensure geometric structure preservation. The final optimization objective is formulated within the framework of partial least squares, and hyperparameters are determined using Bayesian optimization. The effectiveness of the proposed algorithm is demonstrated through experiments on three public datasets.

摘要

为了解决变工况下软测量模型退化问题,并适应动态、非线性和多模态数据特征,本文提出了一种非线性动态迁移软传感器算法。该方法利用时延数据增强来捕捉动态特性,并将增强后的数据投影到潜在空间以构建非线性回归模型。在数据投影过程中引入分布对齐正则化和一阶差分正则化两个正则项,以解决数据分布差异问题。将拉普拉斯正则化纳入非线性回归模型,以确保几何结构的保留。最终的优化目标在偏最小二乘框架内制定,并使用贝叶斯优化确定超参数。通过在三个公开数据集上的实验验证了所提算法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验