Suppr超能文献

基于残差学习的用于低压分布式光伏故障识别与定位的机器人图像分析模型

Residual learning-based robotic image analysis model for low-voltage distributed photovoltaic fault identification and positioning.

作者信息

Zhang Xudong, Ge Yunlong, Wang Yifeng, Wang Jun, Wang Wenhao, Lu Lijun

机构信息

State Grid Hebei Electric Power Company, Shijiazhuang, China.

Henan XJ Metering Co., Ltd., Xuchang, China.

出版信息

Front Neurorobot. 2024 Apr 22;18:1396979. doi: 10.3389/fnbot.2024.1396979. eCollection 2024.

Abstract

With the fast development of large-scale Photovoltaic (PV) plants, the automatic PV fault identification and positioning have become an important task for the PV intelligent systems, aiming to guarantee the safety, reliability, and productivity of large-scale PV plants. In this paper, we propose a residual learning-based robotic (UAV) image analysis model for low-voltage distributed PV fault identification and positioning. In our target scenario, the unmanned aerial vehicles (UAVs) are deployed to acquire moving images of low-voltage distributed PV power plants. To get desired robustness and accuracy of PV image detection, we integrate residual learning with attention mechanism into the UAV image analysis model based on you only look once v4 (YOLOv4) network. Then, we design the sophisticated multi-scale spatial pyramid fusion and use it to optimize the YOLOv4 network for the nuanced task of fault localization within PV arrays, where the Complete-IOU loss is incorporated in the predictive modeling phase, significantly enhancing the accuracy and efficiency of fault detection. A series of experimental comparisons in terms of the accuracy of fault positioning are conducted, and the experimental results verify the feasibility and effectiveness of the proposed model in dealing with the safety and reliability maintenance of low-voltage distributed PV systems.

摘要

随着大规模光伏(PV)电站的快速发展,光伏故障的自动识别与定位已成为光伏智能系统的一项重要任务,旨在保障大规模光伏电站的安全性、可靠性和生产效率。在本文中,我们提出了一种基于残差学习的无人机(UAV)图像分析模型,用于低压分布式光伏故障的识别与定位。在我们的目标场景中,部署无人机以获取低压分布式光伏电站的动态图像。为了获得所需的光伏图像检测鲁棒性和准确性,我们将残差学习与注意力机制集成到基于你只看一次v4(YOLOv4)网络的无人机图像分析模型中。然后,我们设计了复杂的多尺度空间金字塔融合,并将其用于优化YOLOv4网络,以完成光伏阵列内故障定位的细微任务,其中在预测建模阶段引入了Complete-IOU损失,显著提高了故障检测的准确性和效率。我们进行了一系列关于故障定位准确性的实验比较,实验结果验证了所提模型在处理低压分布式光伏系统安全与可靠性维护方面的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/218f/11075493/73755a95be3d/fnbot-18-1396979-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验