Suppr超能文献

基于细菌印迹聚合物和万古霉素偶联 MnO 纳米酶的单细胞水平上对 的超高灵敏和高选择性检测

Ultrasensitive and Highly Selective Detection of at the Single-Cell Level Using Bacteria-Imprinted Polymer and Vancomycin-Conjugated MnO Nanozyme.

机构信息

College of Food Science and Technology, International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China.

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

出版信息

Anal Chem. 2024 May 28;96(21):8641-8647. doi: 10.1021/acs.analchem.4c00755. Epub 2024 May 8.

Abstract

Pathogenic bacterial infections, even at extremely low concentrations, pose significant threats to human health. However, the challenge persists in achieving high-sensitivity bacterial detection, particularly in complex samples. Herein, we present a novel sandwich-type electrochemical sensor utilizing bacteria-imprinted polymer (BIP) coupled with vancomycin-conjugated MnO nanozyme (Van@BSA-MnO) for the ultrasensitive detection of pathogenic bacteria, exemplified by (). The BIP, in situ prepared on the electrode surface, acts as a highly specific capture probe by replicating the surface features of . Vancomycin (Van), known for its affinity to bacterial cell walls, is conjugated with a Bovine serum albumin (BSA)-templated MnO nanozyme through EDC/NHS chemistry. The resulting Van@BSA-MnO complex, serving as a detection probe, provides an efficient catalytic platform for signal amplification. Upon binding with the captured , the Van@BSA-MnO complex catalyzes a substrate reaction, generating a current signal proportional to the target bacterial concentration. The sensor displays remarkable sensitivity, capable of detecting a single bacterial cell in a phosphate buffer solution. Even in complex milk matrices, it maintains outstanding performance, identifying at concentrations as low as 10 CFU mL without requiring intricate sample pretreatment. Moreover, the sensor demonstrates excellent selectivity, particularly in distinguishing target from interfering bacteria of the same genus at concentrations 100-fold higher. This innovative method, employing entirely synthetic materials, provides a versatile and low-cost detection platform for Gram-positive bacteria. In comparison to existing nanozyme-based bacterial sensors with biological recognition materials, our assay offers distinct advantages, including enhanced sensitivity, ease of preparation, and cost-effectiveness, thereby holding significant promise for applications in food safety and environmental monitoring.

摘要

致病细菌感染,即使浓度极低,也对人类健康构成重大威胁。然而,实现高灵敏度细菌检测仍然具有挑战性,特别是在复杂样本中。在此,我们提出了一种新型的夹心型电化学传感器,利用细菌印迹聚合物(BIP)与万古霉素偶联的 MnO 纳米酶(Van@BSA-MnO),用于超灵敏检测致病细菌,以()为例。在电极表面原位制备的 BIP 作为高度特异的捕获探针,通过复制的表面特征。万古霉素(Van)因其与细菌细胞壁的亲和力而被熟知,通过 EDC/NHS 化学与牛血清白蛋白(BSA)模板化 MnO 纳米酶偶联。所得的 Van@BSA-MnO 复合物作为检测探针,提供了一种用于信号放大的高效催化平台。与捕获的结合后,Van@BSA-MnO 复合物催化底物反应,产生与目标细菌浓度成正比的电流信号。该传感器具有出色的灵敏度,能够在磷酸盐缓冲溶液中检测到单个细菌细胞。即使在复杂的牛奶基质中,它仍能保持出色的性能,在无需复杂样品预处理的情况下,能够检测到浓度低至 10 CFU mL 的。此外,该传感器表现出优异的选择性,特别是在区分目标和相同属的干扰细菌方面,其浓度比高出 100 倍。这种采用全合成材料的创新方法为革兰氏阳性菌提供了一种通用且低成本的检测平台。与具有生物识别材料的现有纳米酶基细菌传感器相比,我们的检测方法具有明显的优势,包括增强的灵敏度、易于制备和成本效益,因此在食品安全和环境监测应用中具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验