Suppr超能文献

一种基于群体水平的 DNA 修复的定量建模方法。

A quantitative modelling approach for DNA repair on a population scale.

机构信息

Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.

出版信息

PLoS Comput Biol. 2022 Sep 12;18(9):e1010488. doi: 10.1371/journal.pcbi.1010488. eCollection 2022 Sep.

Abstract

The great advances of sequencing technologies allow the in vivo measurement of nuclear processes-such as DNA repair after UV exposure-over entire cell populations. However, data sets usually contain only a few samples over several hours, missing possibly important information in between time points. We developed a data-driven approach to analyse CPD repair kinetics over time in Saccharomyces cerevisiae. In contrast to other studies that consider sequencing signals as an average behaviour, we understand them as the superposition of signals from independent cells. By motivating repair as a stochastic process, we derive a minimal model for which the parameters can be conveniently estimated. We correlate repair parameters to a variety of genomic features that are assumed to influence repair, including transcription rate and nucleosome density. The clearest link was found for the transcription unit length, which has been unreported for budding yeast to our knowledge. The framework hence allows a comprehensive analysis of nuclear processes on a population scale.

摘要

测序技术的巨大进步使得可以在整个细胞群体中对体内核过程(例如紫外线暴露后的 DNA 修复)进行测量。然而,数据集通常仅在几个小时内包含几个样本,因此可能会错过时间点之间的重要信息。我们开发了一种数据驱动的方法来分析酿酒酵母中 CPD 修复动力学随时间的变化。与其他将测序信号视为平均行为的研究不同,我们将其理解为来自独立细胞的信号的叠加。通过将修复过程激发为随机过程,我们推导出了一个可以方便地估算参数的最小模型。我们将修复参数与各种假定会影响修复的基因组特征(包括转录率和核小体密度)相关联。最明显的关联是转录单元长度,就我们所知,这在出芽酵母中尚无报道。因此,该框架允许在群体规模上对核过程进行全面分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1a/9499311/7954042d5209/pcbi.1010488.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验