Suppr超能文献

基于多变量变分高斯过程收敛交叉映射的神经血管耦合分析。

Neurovascular Coupling Analysis Based on Multivariate Variational Gaussian Process Convergent Cross-Mapping.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:1873-1883. doi: 10.1109/TNSRE.2024.3398662. Epub 2024 May 15.

Abstract

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.

摘要

神经血管耦合(NVC)为深入了解大脑功能的复杂活动提供了重要线索,并可能有助于早期诊断脑部疾病。新出现的证据表明,NVC 可以通过脑电图(EEG)和功能近红外光谱(fNIRS)之间的耦合来评估。然而,由于缺乏标准化的方法和用于这两种模式耦合分析的可靠技术,这项工作面临着重大挑战。在这项研究中,我们引入了一种新的方法,即协同多输出变分高斯过程收敛交叉映射(CMVGP-CCM)方法,以推进 EEG 和 fNIRS 的耦合分析。为了验证 CMVGP-CCM 方法的稳健性和可靠性,我们使用具有不同噪声水平、序列长度和因果驱动强度的混沌时间序列模型进行了广泛的实验。此外,我们还使用 CMVGP-CCM 方法来探索 26 名健康参与者在进行工作记忆(WM)任务时 EEG 和 fNIRS 信号之间的 NVC。结果表明,在 WM 期间,EEG 信号,特别是 delta、theta 和 alpha 频段,对 fNIRS 信号具有显著的因果影响。这种影响主要在额叶中观察到,随着认知需求的增加,其强度呈下降趋势。这项研究揭示了大脑电活动和脑血流之间的复杂联系,为 WM 的潜在 NVC 机制提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验