IEEE Trans Med Imaging. 2024 Nov;43(11):3742-3754. doi: 10.1109/TMI.2024.3398401. Epub 2024 Nov 4.
Cryo-electron tomography (cryo-ET) allows to visualize the cellular context at macromolecular level. To date, the impossibility of obtaining a reliable ground truth is limiting the application of deep learning-based image processing algorithms in this field. As a consequence, there is a growing demand of realistic synthetic datasets for training deep learning algorithms. In addition, besides assisting the acquisition and interpretation of experimental data, synthetic tomograms are used as reference models for cellular organization analysis from cellular tomograms. Current simulators in cryo-ET focus on reproducing distortions from image acquisition and tomogram reconstruction, however, they can not generate many of the low order features present in cellular tomograms. Here we propose several geometric and organization models to simulate low order cellular structures imaged by cryo-ET. Specifically, clusters of any known cytosolic or membrane-bound macromolecules, membranes with different geometries as well as different filamentous structures such as microtubules or actin-like networks. Moreover, we use parametrizable stochastic models to generate a high diversity of geometries and organizations to simulate representative and generalized datasets, including very crowded environments like those observed in native cells. These models have been implemented in a multiplatform open-source Python package, including scripts to generate cryo-tomograms with adjustable sizes and resolutions. In addition, these scripts provide also distortion-free density maps besides the ground truth in different file formats for efficient access and advanced visualization. We show that such a realistic synthetic dataset can be readily used to train generalizable deep learning algorithms.
低温电子断层扫描(cryo-ET)允许在大分子水平上可视化细胞环境。迄今为止,由于无法获得可靠的真实数据,基于深度学习的图像处理算法在该领域的应用受到限制。因此,对于训练深度学习算法来说,真实的合成数据集的需求日益增长。此外,除了辅助实验数据的获取和解释外,合成断层扫描图还被用作从细胞断层扫描图中分析细胞组织的参考模型。低温电子断层扫描中的当前模拟器侧重于再现图像采集和断层扫描重建过程中的失真,但它们无法生成细胞断层扫描中存在的许多低阶特征。在这里,我们提出了几种几何和组织模型来模拟低温电子断层扫描成像的低阶细胞结构。具体来说,可以模拟任何已知的细胞质或膜结合大分子的簇、具有不同几何形状的膜以及不同的丝状结构,如微管或肌动蛋白样网络。此外,我们使用可参数化的随机模型来生成具有不同几何形状和组织的高多样性,以模拟代表性和通用数据集,包括在天然细胞中观察到的非常拥挤的环境。这些模型已经在一个多平台的开源 Python 包中实现,其中包括用于生成具有可调整大小和分辨率的 cryo-断层扫描图的脚本。此外,这些脚本除了提供 ground truth 之外,还以不同的文件格式提供无失真的密度图,以便于访问和高级可视化。我们表明,这样一个真实的合成数据集可以很容易地用于训练可推广的深度学习算法。