Faculty of Medicine, Department of Community and Family Medicine, University of Jaffna, Jaffna, Sri Lanka.
Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.
PLoS One. 2024 May 8;19(5):e0301729. doi: 10.1371/journal.pone.0301729. eCollection 2024.
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the world. AF increases the risk of stroke 5-fold, though the risk can be reduced with appropriate treatment. Therefore, early diagnosis is imperative but remains a global challenge. In low-and middle-income countries (LMICs), a lack of diagnostic equipment and under-resourced healthcare systems generate further barriers. The rapid development of digital technologies that are capable of diagnosing AF remotely and cost-effectively could prove beneficial for LMICs. However, evidence is lacking on what digital technologies exist and how they compare in regards to diagnostic accuracy. We aim to systematically review the diagnostic accuracy of all digital technologies capable of AF diagnosis.
MEDLINE, Embase and Web of Science will be searched for eligible studies. Free text terms will be combined with corresponding index terms where available and searches will not be limited by language nor time of publication. Cohort or cross-sectional studies comprising adult (≥18 years) participants will be included. Only studies that use a 12-lead ECG as the reference test (comparator) and report outcomes of sensitivity, specificity, the diagnostic odds ratio (DOR) or the positive and negative predictive value (PPV and NPV) will be included (or if they provide sufficient data to calculate these outcomes). Two reviewers will independently assess articles for inclusion, extract data using a piloted tool and assess risk of bias using the QUADAS-2 tool. The feasibility of a meta-analysis will be determined by assessing heterogeneity across the studies, grouped by index device, diagnostic threshold and setting. If a meta-analysis is feasible for any index device, pooled sensitivity and specificity will be calculated using a random effect model and presented in forest plots.
The findings of our review will provide a comprehensive synthesis of the diagnostic accuracy of available digital technologies capable for diagnosing AF. Thus, this review will aid in the identification of which devices could be further trialed and implemented, particularly in a LMIC setting, to improve the early diagnosis of AF.
Systematic review registration: PROSPERO registration number is CRD42021290542. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021290542.
心房颤动(AF)是世界上最常见的心律失常。AF 使中风的风险增加 5 倍,但适当的治疗可以降低这种风险。因此,早期诊断至关重要,但仍然是一个全球性的挑战。在中低收入国家(LMICs),缺乏诊断设备和资源不足的医疗保健系统进一步造成了障碍。能够远程且具有成本效益地诊断 AF 的数字技术的快速发展可能对 LMICs 有益。然而,缺乏关于现有的数字技术以及它们在诊断准确性方面的比较的证据。我们旨在系统地审查所有能够诊断 AF 的数字技术的诊断准确性。
将在 MEDLINE、Embase 和 Web of Science 上搜索合格的研究。将结合可用的自由文本术语和相应的索引术语进行搜索,并且不会对语言和出版时间进行限制。将包括包含成年(≥18 岁)参与者的队列或横断面研究。仅包括使用 12 导联心电图作为参考测试(对照)并报告敏感性、特异性、诊断优势比(DOR)或阳性和阴性预测值(PPV 和 NPV)的研究(或如果它们提供足够的数据来计算这些结果)。两名审查员将独立评估文章的纳入情况,使用经过试验的工具提取数据,并使用 QUADAS-2 工具评估偏倚风险。通过评估研究之间的异质性、按索引设备、诊断阈值和设置进行分组,来确定是否可以进行荟萃分析。如果任何索引设备都可以进行荟萃分析,则将使用随机效应模型计算汇总敏感性和特异性,并以森林图呈现。
我们的审查结果将全面综合现有可用于诊断 AF 的数字技术的诊断准确性。因此,本综述将有助于确定哪些设备可以进一步进行试验和实施,特别是在 LMIC 环境中,以改善 AF 的早期诊断。
系统评价注册:PROSPERO 注册号为 CRD42021290542。https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021290542。