Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
Homi Bhabha National Institute, Mumbai, 400094, India.
Oncogene. 2024 Jun;43(23):1727-1741. doi: 10.1038/s41388-024-03054-9. Epub 2024 May 8.
Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.
在发育过程中建立的表观遗传调控可维持代谢和其他基本细胞过程的转录表达和沉默模式,在癌症中可以被重新编程,为表型的持续改变提供了分子机制。因此,代谢失调和重编程是癌症的一个新兴标志特征,为分子分类提供了机会,作为精准治疗干预的关键初步步骤。然而,大多数常规治疗方案的治疗耐药性的获得以及肿瘤复发,继续给精准医疗带来了未解决的问题,例如乳腺癌,其中现有的数据既提供了癌症的基因型又提供了表型信息。此外,癌细胞代谢环境的表观遗传重编程是治疗耐药性和癌症复发的最重要决定因素之一。重要的是,亚型特异性的表观遗传代谢相互作用深刻地影响着恶性转化、化疗耐药性和对靶向治疗的反应。因此,在这篇综述中,我们从多方面剖析了相互关联的表观遗传和代谢调节途径,然后将其整合到一个可观察到的癌症代谢-治疗-耐药轴中,这可能为临床干预提供信息。通过将全基因组分析与对代谢元素、表观遗传重编程及其代谢谱整合的理解相结合,可能可以在个体肿瘤水平上解码缺失的分子机制。因此,将代谢生物化学与特定肿瘤及其微环境的基因型、表观遗传学和表型联系起来的方法,可能能够成功地针对表观遗传修饰剂和致癌代谢物进行机制靶向治疗,尽管肿瘤代谢存在异质性。