Suppr超能文献

子宫内膜微生物组分析的标准流程。

A Standard Pipeline for Analyzing the Endometrial Microbiome.

机构信息

Maternidade Escola Januário Cicco - MEJC, Federal University of Rio Grande do Norte, Natal, Brazil.

Applied Molecular Biology Laboratory - LAPLIC, Federal University of Rio Grande do Norte, Natal, Brazil.

出版信息

Reprod Sci. 2024 Aug;31(8):2163-2173. doi: 10.1007/s43032-024-01557-0. Epub 2024 May 8.

Abstract

The endometrial microbiome is a rapidly advancing field of research, particularly in obstetrics and gynecology, as it has been found to be linked with obstetric complications and potential impacts on fertility. The diversity of microorganisms presents in the endometrium, along with their metabolites, can influence reproductive outcomes by modulating the local immune environment of the uterus. However, a major challenge in advancing our understanding of the endometrial microbiota lies in the heterogeneity of available studies, which vary in terms of patient selection, control groups, collection methods and analysis methodologies. In this study, we propose a detailed pipeline for endometrial microbiome analysis, based on the most comprehensive prospective of 64 studies that have investigated the endometrial microbiome up to the present. Additionally, our review suggests that a dominance of Lactobacilli in the endometrium may be associated with improved reproductive prognosis, including higher implantation rates and lower miscarriage rates. By establishing a standardized pipeline, we aim to facilitate future research, enabling better comparison and correlation of bacterial communities with the health status of patients, including fertility-related issues.

摘要

子宫内膜微生物组是一个快速发展的研究领域,特别是在妇产科领域,因为它与产科并发症和对生育能力的潜在影响有关。子宫内膜中存在的微生物多样性及其代谢产物可以通过调节子宫局部免疫环境来影响生殖结局。然而,深入了解子宫内膜微生物组的一个主要挑战在于现有研究的异质性,这些研究在患者选择、对照组、采集方法和分析方法方面存在差异。在这项研究中,我们提出了一个基于迄今为止已对子宫内膜微生物组进行研究的 64 项最全面的前瞻性研究的子宫内膜微生物组分析的详细流程。此外,我们的综述表明,子宫内膜中乳杆菌的优势可能与改善生殖预后有关,包括更高的着床率和更低的流产率。通过建立标准化流程,我们旨在促进未来的研究,使细菌群落与患者健康状况(包括与生育相关的问题)的比较和相关性更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验