Suppr超能文献

calibmsm:一个用于多状态模型中转移概率校准图的R包。

calibmsm: An R package for calibration plots of the transition probabilities in a multistate model.

作者信息

Pate Alexander, Sperrin Matthew, Riley Richard D, Van Calster Ben, Martin Glen P

机构信息

Division of Imaging, Informatics and Data Science, University of Manchester, Manchester, United Kingdom.

Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.

出版信息

PLoS One. 2025 Jun 4;20(6):e0320504. doi: 10.1371/journal.pone.0320504. eCollection 2025.

Abstract

BACKGROUND AND OBJECTIVE

Multistate models, which allow the prediction of complex multistate survival processes such as multimorbidity, or recovery, relapse and death following treatment for cancer, are being used for clinical prediction. It is paramount to evaluate the calibration (as well as other metrics) of a risk prediction model before implementation of the model. While there are a number of software applications available for developing multistate models, currently no software exists to aid in assessing the calibration of a multistate model, and as a result evaluation of model performance is uncommon. calibmsm has been developed to fill this gap.

METHODS

Assessing the calibration of predicted transition probabilities between any two states is made possible through three approaches. The first two utilise calibration techniques for binary and multinomial logistic regression models in combination with inverse probability of censoring weights, whereas the third utilises pseudo-values. All methods are implemented in conjunction with landmarking to allow calibration assessment of predictions made at any time beyond the start of follow up. This study focuses on calibration curves, but the methodological framework also allows estimation of calibration slopes and intercepts.

RESULTS

This article serves as a guide on how to use calibmsm to assess the calibration of any multistate model, via a comprehensive example evaluating a model developed to predict recovery, adverse events, relapse and survival in patients with blood cancer after a transplantation. The calibration plots indicate that predictions of relapse made at the time of transplant are poorly calibrated, however predictions of death are well calibrated. The calibration of all predictions made at 100 days post transplant appear to be poor, although a larger validation sample is required to make stronger conclusions.

CONCLUSIONS

calibmsm is an R package which allows users to assess the calibration of predicted transition probabilities from a multistate model. Evaluation of model performance is a key step in the pathway to model implementation, yet evaluation of the performance of predictions from multistate models is not common. We hope availability of software will help model developers evaluate the calibration of models being developed.

摘要

背景与目的

多状态模型可用于预测复杂的多状态生存过程,如多种疾病共存,或癌症治疗后的康复、复发和死亡情况,目前正被用于临床预测。在模型实施之前评估风险预测模型的校准(以及其他指标)至关重要。虽然有许多软件应用程序可用于开发多状态模型,但目前尚无软件可帮助评估多状态模型的校准,因此对模型性能的评估并不常见。calibmsm软件的开发填补了这一空白。

方法

通过三种方法可以评估任意两个状态之间预测转移概率的校准情况。前两种方法将二元和多项逻辑回归模型的校准技术与删失权重的逆概率相结合,而第三种方法使用伪值。所有方法均结合时间标记法实施,以便对随访开始后任何时间做出的预测进行校准评估。本研究重点关注校准曲线,但该方法框架也允许估计校准斜率和截距。

结果

本文通过一个综合示例,介绍了如何使用calibmsm评估任何多状态模型的校准情况,该示例评估了一个用于预测白血病患者移植后康复、不良事件、复发和生存情况的模型。校准图表明,移植时对复发的预测校准不佳,但对死亡的预测校准良好。移植后100天做出的所有预测的校准似乎都很差,不过需要更大的验证样本才能得出更有力的结论。

结论

calibmsm是一个R软件包,用户可以用它评估多状态模型预测转移概率的校准情况。模型性能评估是模型实施过程中的关键一步,但对多状态模型预测性能的评估并不常见。我们希望该软件的可用性将有助于模型开发者评估正在开发的模型的校准情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8e0/12136353/c24596cc1219/pone.0320504.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验