Suppr超能文献

通过电催化过渡金属二硫属化物催化剂活化氮用于电化学合成氨

Activating Nitrogen for Electrochemical Ammonia Synthesis via an Electrified Transition-Metal Dichalcogenide Catalyst.

作者信息

Aubry Taylor J, Clary Jacob M, Miller Elisa M, Vigil-Fowler Derek, van de Lagemaat Jao

机构信息

Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Apr 23;128(17):7063-7072. doi: 10.1021/acs.jpcc.3c08230. eCollection 2024 May 2.

Abstract

The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T'-phase MoS and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N structure properties are potential-independent. In contrast, GC-DFT calculations show that reductive potentials activate N toward electroreduction by controlling its back-bonding strength and lengthening the N-N triple bond while decreasing its bond order. Similar trends are observed for another classic back-bonding ligand in CO, suggesting that this mechanism may be broadly relevant to other electrochemistries involving back-bonded adsorbates. Furthermore, reductive potentials are required to make the subsequent N hydrogenation steps favorable but simultaneously destabilizes the N adsorbed structure resulting in a trade-off between the favorability of N adsorption and the subsequent reaction steps. We show that GC-DFT facilitates modeling all these phenomena and that together they can have important implications in predicting electrocatalyst selectivity for the NRR and potentially other reactions.

摘要

电催化反应中经常出现的局部化学、溶剂微环境和带电界面之间复杂的相互作用,推动了能够准确模拟这些效应的量子化学方法的发展。在这里,我们预测了1T'-相MoS中硫空位处氮还原反应(NRR)的热力学,并强调了在巨正则密度泛函理论(GC-DFT)中对电势的实际处理如何无缝捕捉外加电势对与溶剂化分子相互作用的催化剂界面的多种竞争效应。在标准方法中,计算氢电极被广泛使用,并预测吸附的N结构性质与电势无关。相比之下,GC-DFT计算表明,还原电势通过控制其反馈键强度和延长N-N三键同时降低其键级,从而激活N进行电还原。对于CO中另一种典型的反馈键配体也观察到了类似的趋势,这表明这种机制可能与涉及反馈键吸附质的其他电化学广泛相关。此外,需要还原电势使随后的N氢化步骤变得有利,但同时会使吸附的N结构不稳定,从而导致N吸附的有利性与随后反应步骤之间的权衡。我们表明,GC-DFT有助于对所有这些现象进行建模,并且它们共同作用可能对预测NRR以及潜在的其他反应的电催化剂选择性具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89bb/11075086/7d78c4f09f3e/jp3c08230_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验