Suppr超能文献

重新思考固氮酶机制:激活活性位点。

Rethinking the Nitrogenase Mechanism: Activating the Active Site.

作者信息

Buscagan Trixia M, Rees Douglas C

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 USA.

Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 USA.

出版信息

Joule. 2019 Nov 20;3(11):2662-2678. doi: 10.1016/j.joule.2019.09.004. Epub 2019 Oct 10.

Abstract

Metalloenzymes called nitrogenases (Nases) harness the reactivity of transition metals to reduce N to NH. Specifically, Nases feature a multimetallic active site, called a cofactor, which binds and reduces N. The seven Fe centers and one additional metal center (Mo, V, or Fe) that make up the cofactor are all potential substrate binding sites. Unraveling the mechanism by which the cofactor binds N and reduces N to NH represents a multifaceted challenge because cofactor activation is required for N binding and functionalization to NH. Despite decades of fascinating contributions, the nature of N binding to the active site and the structure of the activated cofactor remain unknown. Herein, we discuss the challenges associated with N reduction and how transition metal complexes facilitate N functionalization by coordinating N. We also review the activation and/or reaction mechanisms reported for small molecule catalysts and the Haber-Bosch catalyst and discuss their potential relevance to biological N fixation. Finally, we survey what is known about the mechanism of Nase and highlight recent X-ray crystallographic studies supporting Fe-S bond cleavage at the active site to generate reactive Fe centers as a potential, underexplored route for cofactor activation. We propose that structural rearrangements, beyond electron and proton transfers, are key in generating the catalytically active state(s) of the cofactor. Understanding the mechanism of activation will be key to understanding N binding and reduction.

摘要

被称为固氮酶(Nases)的金属酶利用过渡金属的反应活性将N还原为NH。具体而言,固氮酶具有一个多金属活性位点,称为辅因子,它能结合并还原N。构成辅因子的七个铁中心和一个额外的金属中心(钼、钒或铁)都是潜在的底物结合位点。阐明辅因子结合N并将N还原为NH的机制是一项多方面的挑战,因为N的结合和官能化生成NH需要辅因子的激活。尽管有几十年引人入胜的研究贡献,但N与活性位点的结合性质以及活化辅因子的结构仍然未知。在此,我们讨论与N还原相关的挑战,以及过渡金属配合物如何通过配位N促进N的官能化。我们还综述了小分子催化剂和哈伯-博施法催化剂报道的活化和/或反应机制,并讨论它们与生物固氮的潜在相关性。最后,我们概述了关于固氮酶机制的已知信息,并强调了最近的X射线晶体学研究,这些研究支持活性位点处的Fe-S键断裂以产生反应性铁中心,这是一种潜在的、未被充分探索的辅因子活化途径。我们提出,除了电子和质子转移之外,结构重排是产生辅因子催化活性状态的关键。理解活化机制将是理解N结合和还原的关键。

相似文献

1
Rethinking the Nitrogenase Mechanism: Activating the Active Site.重新思考固氮酶机制:激活活性位点。
Joule. 2019 Nov 20;3(11):2662-2678. doi: 10.1016/j.joule.2019.09.004. Epub 2019 Oct 10.
3
Cyclophanes as Platforms for Reactive Multimetallic Complexes.环芳烷作为反应性多金属配合物的平台。
Acc Chem Res. 2019 Feb 19;52(2):447-455. doi: 10.1021/acs.accounts.8b00559. Epub 2019 Jan 22.
5
Dinitrogen binding and cleavage by multinuclear iron complexes.多核铁配合物对二氮的结合与裂解
Acc Chem Res. 2015 Jul 21;48(7):2059-65. doi: 10.1021/acs.accounts.5b00213. Epub 2015 Jun 23.
6
Nitrogenase Cofactor Assembly: An Elemental Inventory.固氮酶辅因子组装:元素清单。
Acc Chem Res. 2017 Nov 21;50(11):2834-2841. doi: 10.1021/acs.accounts.7b00417. Epub 2017 Oct 24.
10

引用本文的文献

2
The nitrogenase mechanism: new roles for the dangler?固氮酶机制:悬垂基团的新作用?
J Biol Inorg Chem. 2025 Mar;30(2):125-133. doi: 10.1007/s00775-024-02085-7. Epub 2024 Dec 19.
3

本文引用的文献

3
Selective Synthesis of Site-Differentiated FeS and FeS Clusters.位点分化的FeS和FeS簇的选择性合成。
Inorg Chem. 2018 Dec 3;57(23):14904-14912. doi: 10.1021/acs.inorgchem.8b02684. Epub 2018 Nov 12.
6
The Critical E State of Nitrogenase Catalysis.固氮酶催化的关键E态
Biochemistry. 2018 Sep 25;57(38):5497-5504. doi: 10.1021/acs.biochem.8b00509. Epub 2018 Jul 17.
9
Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine-Titanium Complex.三酰胺基胺-钛配合物催化氮气还原制氨
Angew Chem Int Ed Engl. 2018 May 22;57(21):6314-6318. doi: 10.1002/anie.201802576. Epub 2018 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验