文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

克里斯滕森菌属菌株资源、基因组/代谢组学分析及其在种水平与宿主的关联。

Christensenella strain resources, genomic/metabolomic profiling, and association with host at species level.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.

College of Veterinary Medicine, Shanxi Agr icultural University, Taigu, China.

出版信息

Gut Microbes. 2024 Jan-Dec;16(1):2347725. doi: 10.1080/19490976.2024.2347725. Epub 2024 May 9.


DOI:10.1080/19490976.2024.2347725
PMID:38722028
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11085954/
Abstract

The gut commensal bacteria species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of strains from fecal samples. Using this method, a collection of Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured resources have been significantly expanded at species and strain levels. strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that and were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, showed different changes among healthy and disease cohorts. , , , and significantly reduced in all the metabolic disease cohorts. The relative abundances of and showed no significant change in NAFLD and ACVD. and and showed no significant change in ACVD, and and showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of prevalences and abundances at species level.

摘要

肠道共生细菌种类与许多代谢性疾病呈负相关,被视为有前途的下一代益生菌。然而,可培养的菌株资源有限,其改善代谢性疾病的有益机制仍有待探索。在本研究中,我们开发了一种从粪便样本中富集和培养菌株的方法。利用这种方法,建立了一个肠道微生物生物库(ChrisGMB),其中包含 87 株代表 8 个属 14 个种的菌株和基因组。其中 7 个种是首次描述的,在种和株水平上可培养资源得到了显著扩展。菌株在利用各种复杂多糖和其他碳源方面表现出不同的能力,表现出耐酸和耐胆盐等宿主适应能力,产生广泛的挥发性益生菌代谢物和次级胆汁酸。队列分析表明,在各种队列中都普遍存在 和 ,并且在 T2D 和 OB 队列中丰度显著降低。在种水平上,健康和疾病队列中 的变化不同。在所有代谢性疾病队列中, 、 、 、 和 显著减少。在 NAFLD 和 ACVD 中, 和 相对丰度没有显著变化。在 ACVD 中, 和 没有显著变化,在 NAFLD 中, 和 没有显著变化,与 HC 队列相比。据我们所知,这是最大的可培养资源集合,也是首次在种水平上探索 的流行率和丰度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/f8415c29ac8a/KGMI_A_2347725_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/44771a6118e0/KGMI_A_2347725_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/579c44b8eae8/KGMI_A_2347725_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/93a5b8ae201e/KGMI_A_2347725_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/444e72605740/KGMI_A_2347725_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/f555f093fde0/KGMI_A_2347725_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/f8415c29ac8a/KGMI_A_2347725_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/44771a6118e0/KGMI_A_2347725_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/579c44b8eae8/KGMI_A_2347725_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/93a5b8ae201e/KGMI_A_2347725_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/444e72605740/KGMI_A_2347725_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/f555f093fde0/KGMI_A_2347725_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/11085954/f8415c29ac8a/KGMI_A_2347725_F0006_OC.jpg

相似文献

[1]
Christensenella strain resources, genomic/metabolomic profiling, and association with host at species level.

Gut Microbes. 2024

[2]
The keystone gut species boosts gut microbial biomass and voluntary physical activity in mice.

mBio. 2024-2-14

[3]
Syntrophy via Interspecies H Transfer between and Underlies Their Global Cooccurrence in the Human Gut.

mBio. 2020-2-4

[4]
, a new candidate next-generation probiotic: current evidence and future trajectories.

Front Microbiol. 2024-1-11

[5]
Reclassification of as comb. nov. based on whole genome analysis.

Int J Syst Evol Microbiol. 2021-4

[6]
A New Strain of as a Potential Biotherapy for Obesity and Associated Metabolic Diseases.

Cells. 2021-4-6

[7]
interacts with multiple gut bacteria.

Front Microbiol. 2024-2-19

[8]
Human genetics shape the gut microbiome.

Cell. 2014-11-6

[9]
Description and genomic characterization of Massiliimalia massiliensis gen. nov., sp. nov., and Massiliimalia timonensis gen. nov., sp. nov., two new members of the family Ruminococcaceae isolated from the human gut.

Antonie Van Leeuwenhoek. 2019-6

[10]
Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution.

Cell Host Microbe. 2024-10-9

引用本文的文献

[1]
Genomic insights and metabolic profiling of gut commensal Luoshenia tenuis at strain level.

NPJ Biofilms Microbiomes. 2025-8-5

[2]
Multi-omics reveals EGCG's anti-calcification effects associated with gut microbiota and metabolite remodeling.

Front Immunol. 2025-6-26

[3]
Probiotic Lactobacillus rhamnosus GG Alleviates Prehypertension and Restores Gut Health and Microbiota in NaCl-Induced Prehypertensive Rats.

Probiotics Antimicrob Proteins. 2025-4-20

[4]
Gut microbiota differences, metabolite changes, and disease intervention during metabolic - dysfunction - related fatty liver progression.

World J Hepatol. 2025-3-27

[5]
Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens.

Microbiome. 2025-3-1

[6]
MetOrigin 2.0: Advancing the discovery of microbial metabolites and their origins.

Imeta. 2024-11-6

本文引用的文献

[1]
Metabolite profiling of human-originated Lachnospiraceae at the strain level.

Imeta. 2022-10-13

[2]
Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids.

Nat Microbiol. 2024-2

[3]
Traditional Medicine Pien Tze Huang Suppresses Colorectal Tumorigenesis Through Restoring Gut Microbiota and Metabolites.

Gastroenterology. 2023-12

[4]
Carbohydrate quality, fecal microbiota and cardiometabolic health in older adults: a cohort study.

Gut Microbes. 2023-12

[5]
Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis.

Cell Metab. 2023-10-3

[6]
Depletion of butyrate-producing microbes of the Firmicutes predicts nonresponse to FMT therapy in patients with recurrent infection.

Gut Microbes. 2023

[7]
A Keystone Gut Bacterium -A Potential Biotherapeutic Agent for Obesity and Associated Metabolic Diseases.

Foods. 2023-6-26

[8]
Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome.

Cell. 2023-6-22

[9]
Inhibitory effects of culture and supernatant on inflammatory colorectal cancer in mice.

Front Immunol. 2023

[10]
Effects of Caprylic Acid and Eicosapentaenoic Acid on Lipids, Inflammatory Levels, and the JAK2/STAT3 Pathway in ABCA1-Deficient Mice and ABCA1 Knock-Down RAW264.7 Cells.

Nutrients. 2023-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索