Suppr超能文献

基于深度学习的语义分割算法评估微血管吻合术中针操作过程中血管面积的变化:一项初步研究。

Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study.

机构信息

Department of Diagnostic Imaging, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan.

Clinical AI Human Resources Development Program, Hokkaido University Graduate School of Biomedical Science and Engineering, Sapporo, Japan.

出版信息

Neurosurg Rev. 2024 May 9;47(1):200. doi: 10.1007/s10143-024-02437-6.

Abstract

Appropriate needle manipulation to avoid abrupt deformation of fragile vessels is a critical determinant of the success of microvascular anastomosis. However, no study has yet evaluated the area changes in surgical objects using surgical videos. The present study therefore aimed to develop a deep learning-based semantic segmentation algorithm to assess the area change of vessels during microvascular anastomosis for objective surgical skill assessment with regard to the "respect for tissue." The semantic segmentation algorithm was trained based on a ResNet-50 network using microvascular end-to-side anastomosis training videos with artificial blood vessels. Using the created model, video parameters during a single stitch completion task, including the coefficient of variation of vessel area (CV-VA), relative change in vessel area per unit time (ΔVA), and the number of tissue deformation errors (TDE), as defined by a ΔVA threshold, were compared between expert and novice surgeons. A high validation accuracy (99.1%) and Intersection over Union (0.93) were obtained for the auto-segmentation model. During the single-stitch task, the expert surgeons displayed lower values of CV-VA (p < 0.05) and ΔVA (p < 0.05). Additionally, experts committed significantly fewer TDEs than novices (p < 0.05), and completed the task in a shorter time (p < 0.01). Receiver operating curve analyses indicated relatively strong discriminative capabilities for each video parameter and task completion time, while the combined use of the task completion time and video parameters demonstrated complete discriminative power between experts and novices. In conclusion, the assessment of changes in the vessel area during microvascular anastomosis using a deep learning-based semantic segmentation algorithm is presented as a novel concept for evaluating microsurgical performance. This will be useful in future computer-aided devices to enhance surgical education and patient safety.

摘要

适当的针具操作以避免脆弱血管的突然变形是微血管吻合成功的关键决定因素。然而,目前还没有研究使用手术视频评估手术对象的面积变化。因此,本研究旨在开发一种基于深度学习的语义分割算法,以评估微血管端端吻合过程中血管的面积变化,从而客观地评估“组织尊重”方面的手术技能。该语义分割算法是基于 ResNet-50 网络,使用带有人工血管的微血管端侧吻合训练视频进行训练的。使用所创建的模型,比较了专家和新手外科医生在单个缝合完成任务期间的视频参数,包括血管面积变化系数(CV-VA)、单位时间内血管面积的相对变化(ΔVA)和定义为 ΔVA 阈值的组织变形错误(TDE)的数量。自动分割模型的验证准确率(99.1%)和交并比(0.93)均较高。在单针任务中,专家外科医生的 CV-VA(p<0.05)和 ΔVA(p<0.05)值较低。此外,专家的 TDE 明显少于新手(p<0.05),并且完成任务的时间更短(p<0.01)。受试者工作特征曲线分析表明,每个视频参数和任务完成时间均具有较强的区分能力,而任务完成时间和视频参数的联合使用则表现出专家和新手之间完全的区分能力。总之,使用基于深度学习的语义分割算法评估微血管吻合过程中血管面积的变化,为评估显微手术性能提供了一个新的概念。这将有助于未来的计算机辅助设备,以增强手术教育和患者安全。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验