Suppr超能文献

用于显微外科技能评估的人工智能集成视频分析:血管区域变化和器械运动分析

Artificial intelligence-integrated video analysis of vessel area changes and instrument motion for microsurgical skill assessment.

作者信息

Sugiyama Taku, Tang Minghui, Sugimori Hiroyuki, Sakamoto Marin, Fujimura Miki

机构信息

Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.

Medical AI Research and Development Center, Hokkaido University Hospital, Sapporo, Japan.

出版信息

Sci Rep. 2025 Jul 31;15(1):27898. doi: 10.1038/s41598-025-13522-1.

Abstract

Mastering microsurgical skills is essential for neurosurgical trainees. Video-based analysis of target tissue changes and surgical instrument motion provides an objective, quantitative method for assessing microsurgical proficiency, potentially enhancing training and patient safety. This study evaluates the effectiveness of an artificial intelligence (AI)-based video analysis model in assessing microsurgical performance and examines the correlation between AI-derived parameters and specific surgical skill components. A dual AI framework was developed, integrating a semantic segmentation model for artificial blood vessel analysis with an instrument tip-tracking algorithm. These models quantified dynamic vessel area fluctuation, tissue deformation error count, instrument path distance, and normalized jerk index during a single-stitch end-to-side anastomosis task performed by 14 surgeons with varying experience levels. The AI-derived parameters were validated against traditional criteria-based rating scales assessing instrument handling, tissue respect, efficiency, suture handling, suturing technique, operation flow, and overall performance. Rating scale scores correlated with microsurgical experience, exhibiting a bimodal distribution that classified performance into good and poor groups. Video-based parameters showed strong correlations with various skill categories. Receiver operating characteristic analysis demonstrated that combining these parameters improved the discrimination of microsurgical performance. The proposed method effectively captures technical microsurgical skills and can assess performance.

摘要

掌握显微外科技能对神经外科实习生至关重要。基于视频分析目标组织变化和手术器械运动,为评估显微手术熟练程度提供了一种客观、定量的方法,有可能提高培训效果和患者安全性。本研究评估基于人工智能(AI)的视频分析模型在评估显微手术表现方面的有效性,并检验人工智能衍生参数与特定手术技能组成部分之间的相关性。开发了一个双重人工智能框架,将用于人工血管分析的语义分割模型与器械尖端跟踪算法相结合。这些模型对14名经验水平各异的外科医生在单针端侧吻合任务中的动态血管面积波动、组织变形误差计数、器械路径距离和标准化加加速度指数进行了量化。将人工智能衍生参数与基于传统标准的评分量表进行验证,该量表评估器械操作、组织保护、效率、缝线操作、缝合技术、手术流程和整体表现。评分量表得分与显微手术经验相关,呈现双峰分布,将表现分为良好和较差两组。基于视频的参数与各种技能类别显示出很强的相关性。受试者操作特征分析表明,结合这些参数可提高对显微手术表现的辨别力。所提出的方法有效地捕捉了显微手术技术技能,并能评估表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验