Nieto-Domínguez Manuel, Sako Aboubakar, Enemark-Rasmussen Kasper, Gotfredsen Charlotte Held, Rago Daniela, Nikel Pablo I
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
Department of Chemistry, NMR Center, Technical University of Denmark, Kongens Lyngby, Denmark.
Commun Chem. 2024 May 9;7(1):104. doi: 10.1038/s42004-024-01188-1.
Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in β-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.
氟化氨基酸是在生物系统中建立新型天然化学的切入点,因此需要新的方法来选择性合成这些构建模块。在本研究中,我们专注于氟化丙氨酸对映体的酶促合成,以扩展氟生物催化。分别选用解蛋白弧菌的丙氨酸脱氢酶和嗜热共生菌的二氨基庚二酸脱氢酶,以3-氟丙酮酸为底物,在体外生产(R)-3-氟丙氨酸和(S)-3-氟丙氨酸。此外,我们发现,最初被选用于建立另一种酶促级联反应以生产这些非标准氨基酸的薰衣草链霉菌的丙氨酸消旋酶,在从单取代氟丙氨酸中β-消除氟方面具有前所未有的催化效率。基于解蛋白弧菌和嗜热共生菌脱氢酶的体外酶促级联反应包括一个辅因子循环系统,其中假单胞菌属101(天然或工程改造)的甲酸脱氢酶将甲酸氧化与NAD(P)H的形成偶联。在这些条件下,氟化底物上(R)-3-氟丙氨酸和(S)-3-氟丙氨酸的反应产率达到>85%,且对映体过量完全。所选的脱氢酶还催化了三氟丙酮酸转化为三氟丙氨酸,这是含三氟甲基氨基酸氟生物催化的首个实例。