文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 nnu-net 进行小儿肾母细胞瘤 CT 的自动分割和体积预测。

Automated segmentation and volume prediction in pediatric Wilms' tumor CT using nnu-net.

机构信息

Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binshneg Rd, Hangzhou, China.

Wenzhou Medical University, Wenzhou, China.

出版信息

BMC Pediatr. 2024 May 9;24(1):321. doi: 10.1186/s12887-024-04775-2.


DOI:10.1186/s12887-024-04775-2
PMID:38724944
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11080230/
Abstract

BACKGROUND: Radiologic volumetric evaluation of Wilms' tumor (WT) is an important indicator to guide treatment decisions. However, due to the heterogeneity of the tumors, radiologists have main-guard differences in diagnosis that can lead to misdiagnosis and poor treatment. The aim of this study was to explore whether CT-based outlining of WT foci can be automated using deep learning. METHODS: We included CT intravenous phase images of 105 patients with WT and double-blind outlining of lesions by two radiologists. Then, we trained an automatic segmentation model using nnUnet. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD) were used to assess the performance. Next, we optimized the automatic segmentation results based on the ratio of the three-dimensional diameter of the lesion to improve the performance of volumetric assessment. RESULTS: The DSC and HD was 0.83 ± 0.22 and 10.50 ± 8.98 mm. The absolute difference and percentage difference in tumor size was 72.27 ± 134.84 cm and 21.08% ± 30.46%. After optimization according to our method, it decreased to 40.22 ± 96.06 cm and 10.16% ± 9.70%. CONCLUSION: We introduce a novel method that enhances the accuracy of predicting WT volume by integrating AI automated outlining and 3D tumor diameters. This approach surpasses the accuracy of using AI outcomes alone and has the potential to enhance the clinical evaluation of pediatric patients with WT. By intertwining AI outcomes with clinical data, this method becomes more interpretive and offers promising applications beyond Wilms tumor, extending to other pediatric diseases.

摘要

背景:Wilms 瘤(WT)的放射学容积评估是指导治疗决策的重要指标。然而,由于肿瘤的异质性,放射科医生在诊断上存在主要差异,可能导致误诊和治疗效果不佳。本研究旨在探讨是否可以使用深度学习自动进行基于 CT 的 WT 病灶勾画。

方法:我们纳入了 105 例 WT 患者的 CT 静脉相图像,并由两名放射科医生进行了病变的双盲勾画。然后,我们使用 nnUnet 训练了一个自动分割模型。使用 Dice 相似系数(DSC)和 95%的 Hausdorff 距离(HD)来评估性能。接下来,我们根据病变的三维直径比优化自动分割结果,以提高容积评估的性能。

结果:DSC 和 HD 分别为 0.83±0.22 和 10.50±8.98mm。肿瘤大小的绝对差值和百分比差值分别为 72.27±134.84cm 和 21.08%±30.46%。根据我们的方法进行优化后,差值降至 40.22±96.06cm 和 10.16%±9.70%。

结论:我们提出了一种新方法,通过整合 AI 自动勾画和 3D 肿瘤直径,提高了预测 WT 体积的准确性。该方法优于仅使用 AI 结果的准确性,有可能增强对儿科 WT 患者的临床评估。通过将 AI 结果与临床数据相结合,该方法更具可解释性,并在 Wilms 肿瘤之外具有广阔的应用前景,可扩展到其他儿科疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/70a6f4cc5edc/12887_2024_4775_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/32efde8d616d/12887_2024_4775_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/26ec2f3b16ca/12887_2024_4775_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/4ca0c01334d9/12887_2024_4775_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/d1b3b7464912/12887_2024_4775_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/70a6f4cc5edc/12887_2024_4775_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/32efde8d616d/12887_2024_4775_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/26ec2f3b16ca/12887_2024_4775_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/4ca0c01334d9/12887_2024_4775_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/d1b3b7464912/12887_2024_4775_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11080230/70a6f4cc5edc/12887_2024_4775_Fig5_HTML.jpg

相似文献

[1]
Automated segmentation and volume prediction in pediatric Wilms' tumor CT using nnu-net.

BMC Pediatr. 2024-5-9

[2]
Automation of Wilms' tumor segmentation by artificial intelligence.

Cancer Imaging. 2024-7-2

[3]
Radiomics in differential diagnosis of Wilms tumor and neuroblastoma with adrenal location in children.

Eur Radiol. 2024-8

[4]
Added value of abdominal cross-sectional imaging (CT or MRI) in staging of Wilms' tumours.

Clin Radiol. 2012-8-11

[5]
Local staging of Wilms' tumor--computerized tomography correlation with histological findings.

J Pediatr Surg. 2000-5

[6]
Volumetric assessment of unaffected parenchyma and Wilms' tumours: analysis of response to chemotherapy and surgery using a semi-automated segmentation algorithm in children with renal neoplasms.

BJU Int. 2020-2-27

[7]
3D reconstruction of Wilms' tumor and kidneys in children: Variability, usefulness and constraints.

J Pediatr Urol. 2020-12

[8]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[9]
Correlation between CT-estimated tumor volume, pathologic tumor volume, and final pathologic specimen weight in children with Wilms' tumor.

J Pediatr Urol. 2014-2

[10]
Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients.

Cancers (Basel). 2023-4-1

引用本文的文献

[1]
Artificial Intelligence Models in Diagnosis and Treatment of Kidney Diseases: Current Status and Prospects.

Kidney Dis (Basel). 2025-6-12

[2]
Performance Evaluation of Image Segmentation Using Dual-Energy Spectral CT Images with Deep Learning Image Reconstruction: A Phantom Study.

Tomography. 2025-4-27

[3]
Exploring the adaptation of the Nephroblastoma Oncosimulator to MRI scans, treatment data, and histological profiles of patients from different risk groups.

Front Physiol. 2025-4-17

[4]
MRI Radiomics-Based Machine Learning to Predict Lymphovascular Invasion of HER2-Positive Breast Cancer.

J Imaging Inform Med. 2024-11-13

本文引用的文献

[1]
Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients.

Cancers (Basel). 2023-4-1

[2]
Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis.

Front Public Health. 2022

[3]
Machine Learning-Based CT Radiomics Method for Identifying the Stage of Wilms Tumor in Children.

Front Pediatr. 2022-5-23

[4]
Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers.

J Digit Imaging. 2022-8

[5]
Characteristics and outcome of children with renal tumors in the Netherlands: The first five-year's experience of national centralization.

PLoS One. 2022

[6]
Postchemotherapy tumor volume as a prognostic indicator in Wilms tumor: A single-center experience from South India.

Pediatr Blood Cancer. 2022-2

[7]
Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models.

Comput Methods Programs Biomed. 2022-1

[8]
Deep learning in cancer diagnosis, prognosis and treatment selection.

Genome Med. 2021-9-27

[9]
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.

Nat Methods. 2021-2

[10]
3D reconstruction of Wilms' tumor and kidneys in children: Variability, usefulness and constraints.

J Pediatr Urol. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索