Suppr超能文献

小儿患者MRI上Wilms瘤体积定量的放射学测量与分割测量对比

Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients.

作者信息

Buser Myrthe A D, van der Steeg Alida F W, Wijnen Marc H W A, Fitski Matthijs, van Tinteren Harm, van den Heuvel-Eibrink Marry M, Littooij Annemieke S, van der Velden Bas H M

机构信息

Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands.

Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands.

出版信息

Cancers (Basel). 2023 Apr 1;15(7):2115. doi: 10.3390/cancers15072115.

Abstract

Wilms tumor is a common pediatric solid tumor. To evaluate tumor response to chemotherapy and decide whether nephron-sparing surgery is possible, tumor volume measurements based on magnetic resonance imaging (MRI) are important. Currently, radiological volume measurements are based on measuring tumor dimensions in three directions. Manual segmentation-based volume measurements might be more accurate, but this process is time-consuming and user-dependent. The aim of this study was to investigate whether manual segmentation-based volume measurements are more accurate and to explore whether these segmentations can be automated using deep learning. We included the MRI images of 45 Wilms tumor patients (age 0-18 years). First, we compared radiological tumor volumes with manual segmentation-based tumor volume measurements. Next, we created an automated segmentation method by training a nnU-Net in a five-fold cross-validation. Segmentation quality was validated by comparing the automated segmentation with the manually created ground truth segmentations, using Dice scores and the 95th percentile of the Hausdorff distances (HD95). On average, manual tumor segmentations result in larger tumor volumes. For automated segmentation, the median dice was 0.90. The median HD95 was 7.2 mm. We showed that radiological volume measurements underestimated tumor volume by about 10% when compared to manual segmentation-based volume measurements. Deep learning can potentially be used to replace manual segmentation to benefit from accurate volume measurements without time and observer constraints.

摘要

肾母细胞瘤是一种常见的儿科实体瘤。为了评估肿瘤对化疗的反应并决定是否可行保留肾单位手术,基于磁共振成像(MRI)的肿瘤体积测量很重要。目前,放射学体积测量是基于在三个方向上测量肿瘤尺寸。基于手动分割的体积测量可能更准确,但这个过程既耗时又依赖用户。本研究的目的是调查基于手动分割的体积测量是否更准确,并探索这些分割能否使用深度学习实现自动化。我们纳入了45例肾母细胞瘤患者(年龄0至18岁)的MRI图像。首先,我们将放射学肿瘤体积与基于手动分割的肿瘤体积测量进行比较。接下来,我们通过在五折交叉验证中训练nnU-Net创建了一种自动分割方法。通过使用Dice分数和豪斯多夫距离的第95百分位数(HD95)将自动分割与手动创建的真实分割进行比较,来验证分割质量。平均而言,手动肿瘤分割得出的肿瘤体积更大。对于自动分割,中位Dice为0.90。中位HD95为7.2毫米。我们表明,与基于手动分割的体积测量相比,放射学体积测量低估肿瘤体积约10%。深度学习有可能用于取代手动分割,从而在不受时间和观察者限制的情况下受益于准确的体积测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb69/10092966/2306310b52eb/cancers-15-02115-g001.jpg

相似文献

1
2
Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors.
AJNR Am J Neuroradiol. 2024 Aug 9;45(8):1081-1089. doi: 10.3174/ajnr.A8293.
3
Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation.
Clin Neuroradiol. 2021 Jun;31(2):357-366. doi: 10.1007/s00062-020-00884-4. Epub 2020 Feb 14.
5
Automated segmentation and volume prediction in pediatric Wilms' tumor CT using nnu-net.
BMC Pediatr. 2024 May 9;24(1):321. doi: 10.1186/s12887-024-04775-2.
6
Automatic Segmentation of Bone Selective MR Images for Visualization and Craniometry of the Cranial Vault.
Acad Radiol. 2022 Mar;29 Suppl 3(Suppl 3):S98-S106. doi: 10.1016/j.acra.2021.03.010. Epub 2021 Apr 24.
7
Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation.
Acta Oncol. 2021 Nov;60(11):1399-1406. doi: 10.1080/0284186X.2021.1949034. Epub 2021 Jul 15.
8
Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis.
Clin Orthop Relat Res. 2019 May;477(5):1036-1052. doi: 10.1097/CORR.0000000000000755.
10
Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning.
Magn Reson Med. 2020 Oct;84(4):2204-2218. doi: 10.1002/mrm.28257. Epub 2020 Mar 13.

引用本文的文献

4
A review on optimization of Wilms tumour management using radiomics.
BJR Open. 2024 Oct 8;6(1):tzae034. doi: 10.1093/bjro/tzae034. eCollection 2024 Jan.
5
Clinical Applications of Artificial Intelligence in Medical Imaging and Image Processing-A Review.
Cancers (Basel). 2024 May 14;16(10):1870. doi: 10.3390/cancers16101870.
6
Automated segmentation and volume prediction in pediatric Wilms' tumor CT using nnu-net.
BMC Pediatr. 2024 May 9;24(1):321. doi: 10.1186/s12887-024-04775-2.

本文引用的文献

1
Machine Learning-Based CT Radiomics Method for Identifying the Stage of Wilms Tumor in Children.
Front Pediatr. 2022 May 23;10:873035. doi: 10.3389/fped.2022.873035. eCollection 2022.
4
Postchemotherapy tumor volume as a prognostic indicator in Wilms tumor: A single-center experience from South India.
Pediatr Blood Cancer. 2022 Feb;69(2):e29454. doi: 10.1002/pbc.29454. Epub 2021 Nov 22.
5
Which measurement method should be used for prostate volume for PI-RADS? A comparison of ellipsoid and segmentation methods.
Clin Imaging. 2021 Dec;80:454-458. doi: 10.1016/j.clinimag.2021.09.003. Epub 2021 Sep 21.
6
3D reconstruction of Wilms' tumor and kidneys in children: Variability, usefulness and constraints.
J Pediatr Urol. 2020 Dec;16(6):830.e1-830.e8. doi: 10.1016/j.jpurol.2020.08.023. Epub 2020 Aug 28.
7
Benchmarking Wilms' tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well?
J Med Imaging (Bellingham). 2019 Jul;6(3):034001. doi: 10.1117/1.JMI.6.3.034001. Epub 2019 Jul 19.
8
The UMBRELLA SIOP-RTSG 2016 Wilms tumour pathology and molecular biology protocol.
Nat Rev Urol. 2018 Nov;15(11):693-701. doi: 10.1038/s41585-018-0100-3.
9
Position paper: Rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-RTSG 2016 protocol.
Nat Rev Urol. 2017 Dec;14(12):743-752. doi: 10.1038/nrurol.2017.163. Epub 2017 Oct 31.
10
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验