Suppr超能文献

通过分析免疫微环境,开发用于预测食管鳞癌新辅助免疫化疗疗效的预后模型。

To develop a prognostic model for neoadjuvant immunochemotherapy efficacy in esophageal squamous cell carcinoma by analyzing the immune microenvironment.

机构信息

Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Department of Endoscopy Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Immunol. 2024 Apr 25;15:1312380. doi: 10.3389/fimmu.2024.1312380. eCollection 2024.

Abstract

OBJECTIVE

The choice of neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical treatment selection by establishing a predictive model for the efficacy of neoadjuvant immunochemotherapy (NICT).

METHODS

A retrospective analysis of 30 patients was conducted, divided into Response and Non-response groups based on whether they achieved major pathological remission (MPR). Differences in genes and immune microenvironment between the two groups were analyzed through next-generation sequencing (NGS) and multiplex immunofluorescence (mIF). Variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves to establish a predictive model. An additional 48 patients were prospectively collected as a validation set to verify the model's effectiveness.

RESULTS

NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF indicated significant differences in the quantity and location of CD3+, PD-L1+, CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a more significant increase in CD8+ and CD20+ in the Response group (P < 0.05), and a more significant decrease in PD-L1+ (P < 0.05). The three variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833), and CD3+ (AUC= 0.826), and a predictive model was established. The model showed high performance in both the training set (AUC= 0.938) and the validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria, the model showed significant improvements in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906).

CONCLUSION

NICT treatment may exert anti-tumor effects by enriching immune cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-L1+ are closely related to therapeutic efficacy. The model containing these three variables can accurately predict treatment outcomes, providing a reliable basis for the selection of neoadjuvant treatment plans.

摘要

目的

食管鳞状细胞癌(ESCC)的新辅助治疗选择存在争议。本研究旨在通过建立新辅助免疫化疗(NICT)疗效预测模型,为临床治疗选择提供依据。

方法

回顾性分析了 30 例患者,根据是否达到主要病理缓解(MPR)分为反应组和非反应组。通过下一代测序(NGS)和多重免疫荧光(mIF)分析两组间基因和免疫微环境的差异。通过 LASSO 回归和 ROC 曲线筛选与治疗效果最密切相关的变量,建立预测模型。另收集 48 例患者作为验证集,验证模型的有效性。

结果

NGS 提示两组间存在 7 个差异基因(ATM、ATR、BIVM-ERCC5、MAP3K1、PRG、RBM10 和 TSHR)(P<0.05)。mIF 提示两组间治疗前 CD3+、PD-L1+、CD3+PD-L1+、CD4+PD-1+、CD4+LAG-3+、CD8+LAG-3+、LAG-3+的数量和位置存在显著差异(P<0.05)。动态 mIF 分析还表明,两组治疗后 CD3+、CD8+和 CD20+均增加,反应组 CD8+和 CD20+增加更显著(P<0.05),PD-L1+降低更显著(P<0.05)。LASSO 回归和 ROC 曲线筛选出与治疗效果最密切相关的三个变量:肿瘤面积 PD-L1+(AUC=0.881)、CD3+PD-L1+(AUC=0.833)和 CD3+(AUC=0.826),建立预测模型。该模型在训练集(AUC=0.938)和验证集(AUC=0.832)中均表现出较高的性能。与传统的 CPS 评分标准相比,该模型在准确性(83.3% vs 70.8%)、敏感性(0.625 vs 0.312)和特异性(0.937 vs 0.906)方面均有显著提高。

结论

NICT 治疗可能通过富集免疫细胞和激活耗竭 T 细胞发挥抗肿瘤作用。肿瘤面积 CD3+、PD-L1+和 CD3+PD-L1+与治疗效果密切相关。包含这三个变量的模型可以准确预测治疗结果,为新辅助治疗方案的选择提供可靠依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e28/11079241/6702d7300725/fimmu-15-1312380-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验