Suppr超能文献

整合单细胞分析建立了一个免疫原性细胞死亡特征,用于预测肺腺癌的预后和免疫治疗。

The integrated single-cell analysis developed an immunogenic cell death signature to predict lung adenocarcinoma prognosis and immunotherapy.

机构信息

Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

出版信息

Aging (Albany NY). 2023 Oct 4;15(19):10305-10329. doi: 10.18632/aging.205077.

Abstract

BACKGROUND

Research on immunogenic cell death (ICD) in lung adenocarcinoma (LUAD) has been relatively limited. This study aims to create ICD-related signatures for accurate survival prognosis prediction in LUAD patients, addressing the challenge of lacking reliable early prognostic indicators for this type of cancer.

METHODS

Using single-cell RNA sequencing (scRNA-seq) analysis, ICD activity in cells was calculated by AUCell algorithm, divided into high- and low-ICD groups according to median values, and key ICD regulatory genes were identified through differential analysis, and these genes were integrated into TCGA data to construct prognostic signatures using LASSO and COX regression analysis, and multi-dimensional analysis of ICD-related signatures in terms of prognosis, immunotherapy, tumor microenvironment (TME), and mutational landscape.

RESULTS

The constructed signature reveals a pronounced disparity in prognosis between the high- and low-risk groups of LUAD patients. The statistical discrepancies in survival times among LUAD patients from both the TCGA and GEO databases further corroborate this observation. Additionally, heightened levels of immune cell infiltration expression are evidenced in the low-risk group, suggesting a potential benefit from immunotherapeutic interventions for these patients. The expression levels of pivotal risk-associated genes in tissue samples were assessed utilizing qRT-PCR, thereby unveiling PITX3 as a plausible therapeutic target in the context of LUAD.

CONCLUSIONS

Our constructed ICD-related signatures provide help in predicting the prognosis and immunotherapy of LUAD patients, and to some extent guide the clinical treatment of LUAD patients.

摘要

背景

肺腺癌(LUAD)的免疫原性细胞死亡(ICD)研究相对较少。本研究旨在为 LUAD 患者创建与 ICD 相关的特征,以准确预测生存预后,解决此类癌症缺乏可靠早期预后指标的挑战。

方法

使用单细胞 RNA 测序(scRNA-seq)分析,通过 AUCell 算法计算细胞中的 ICD 活性,根据中位数将其分为高 ICD 和低 ICD 组,通过差异分析确定关键的 ICD 调节基因,并将这些基因整合到 TCGA 数据中,使用 LASSO 和 COX 回归分析构建预后特征,并从预后、免疫治疗、肿瘤微环境(TME)和突变景观等多个方面对 ICD 相关特征进行多维分析。

结果

构建的特征揭示了 LUAD 患者中高风险和低风险组之间明显的预后差异。TCGA 和 GEO 数据库中 LUAD 患者的生存时间统计差异进一步证实了这一观察结果。此外,低风险组中免疫细胞浸润表达水平升高,表明这些患者可能受益于免疫治疗干预。利用 qRT-PCR 评估组织样本中关键风险相关基因的表达水平,从而揭示 PITX3 可能是 LUAD 治疗的潜在靶点。

结论

我们构建的与 ICD 相关的特征有助于预测 LUAD 患者的预后和免疫治疗,并在一定程度上指导 LUAD 患者的临床治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/907d/10599752/5ac356495839/aging-15-205077-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验