Suppr超能文献

基于顺序图卷积网络和深度循环神经网络的混合框架用于从脑电图信号中检测癫痫发作

Sequential graph convolutional network and DeepRNN based hybrid framework for epileptic seizure detection from EEG signal.

作者信息

Jibon Ferdaus Anam, Jamil Chowdhury A R, Miraz Mahadi Hasan, Jin Hwang Ha, Khandaker Mayeen Uddin, Sultana Sajia, Nur Sifat, Siddiqui Fazlul Hasan, Kamal Ahm, Salman Mohammad, Youssef Ahmed A F

机构信息

Department of Computer Science & Engineering, University of Information Technology & Sciences (UITS), Dhaka, Bangladesh.

Department of Management, Marketing and Digital Business, Faculty of Business, Curtin University Malaysia, Miri, Malaysia.

出版信息

Digit Health. 2024 May 7;10:20552076241249874. doi: 10.1177/20552076241249874. eCollection 2024 Jan-Dec.

Abstract

Automated epileptic seizure detection from ectroencephalogram (EEG) signals has attracted significant attention in the recent health informatics field. The serious brain condition known as epilepsy, which is characterized by recurrent seizures, is typically described as a sudden change in behavior caused by a momentary shift in the excessive electrical discharges in a group of brain cells, and EEG signal is primarily used in most cases to identify seizure to revitalize the close loop brain. The development of various deep learning (DL) algorithms for epileptic seizure diagnosis has been driven by the EEG's non-invasiveness and capacity to provide repetitive patterns of seizure-related electrophysiological information. Existing DL models, especially in clinical contexts where irregular and unordered structures of physiological recordings make it difficult to think of them as a matrix; this has been a key disadvantage to producing a consistent and appropriate diagnosis outcome due to EEG's low amplitude and nonstationary nature. Graph neural networks have drawn significant improvement by exploiting implicit information that is present in a brain anatomical system, whereas inter-acting nodes are connected by edges whose weights can be determined by either temporal associations or anatomical connections. Considering all these aspects, a novel hybrid framework is proposed for epileptic seizure detection by combined with a sequential graph convolutional network (SGCN) and deep recurrent neural network (DeepRNN). Here, DepRNN is developed by fusing a gated recurrent unit (GRU) with a traditional RNN; its key benefit is that it solves the vanishing gradient problem and achieve this hybrid framework greater sophistication. The line length feature, auto-covariance, auto-correlation, and periodogram are applied as a feature from the raw EEG signal and then grouped the resulting matrix into time-frequency domain as inputs for the SGCN to use for seizure classification. This model extracts both spatial and temporal information, resulting in improved accuracy, precision, and recall for seizure detection. Extensive experiments conducted on the CHB-MIT and TUH datasets showed that the SGCN-DeepRNN model outperforms other deep learning models for seizure detection, achieving an accuracy of 99.007%, with high sensitivity and specificity.

摘要

从脑电图(EEG)信号中自动检测癫痫发作在近期的健康信息学领域引起了广泛关注。癫痫是一种严重的脑部疾病,其特征是反复发作,通常被描述为由一组脑细胞中过量放电的瞬间变化引起的行为突然改变,在大多数情况下,EEG信号主要用于识别癫痫发作以恢复闭环大脑功能。EEG的非侵入性以及提供癫痫发作相关电生理信息重复模式的能力推动了用于癫痫发作诊断的各种深度学习(DL)算法的发展。现有的DL模型,特别是在临床环境中,生理记录的不规则和无序结构使得难以将它们视为矩阵;由于EEG的低幅度和非平稳性质,这一直是产生一致和适当诊断结果的关键劣势。图神经网络通过利用大脑解剖系统中存在的隐式信息取得了显著改进,而相互作用的节点由边连接,边的权重可以由时间关联或解剖连接确定。考虑到所有这些方面,提出了一种新颖的混合框架,通过结合顺序图卷积网络(SGCN)和深度循环神经网络(DeepRNN)来进行癫痫发作检测。在这里,DeepRNN是通过将门控循环单元(GRU)与传统RNN融合而开发的;其主要优点是解决了梯度消失问题,并使这个混合框架更加复杂。将线长特征、自协方差、自相关和周期图作为原始EEG信号的特征应用,然后将得到的矩阵分组到时频域,作为SGCN用于癫痫发作分类的输入。该模型提取了空间和时间信息,从而提高了癫痫发作检测的准确性、精确性和召回率。在CHB - MIT和TUH数据集上进行的大量实验表明,SGCN - DeepRNN模型在癫痫发作检测方面优于其他深度学习模型,准确率达到99.007%,具有高灵敏度和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a02/11080778/103fe38b8e5f/10.1177_20552076241249874-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验