Suppr超能文献

一种结合特征融合和混合深度学习模型的癫痫发作检测和预测方案。

A scheme combining feature fusion and hybrid deep learning models for epileptic seizure detection and prediction.

机构信息

College of Information Engineering, Henan University of Science and Technology, Luoyang, China.

The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.

出版信息

Sci Rep. 2024 Jul 23;14(1):16916. doi: 10.1038/s41598-024-67855-4.

Abstract

Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time-frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures.

摘要

癫痫是全球最为知名的神经紊乱疾病之一,会导致患者突然发作,严重影响其生活质量。因此,我们急需一种高效的方法来检测和预测癫痫发作,以降低癫痫患者所面临的风险。在本文中,我们提出了一种基于多类特征融合和卷积神经网络-门控循环单元-注意力机制(CNN-GRU-AM)模型的癫痫发作检测和预测新方法。首先,通过离散小波变换(DWT)对脑电图(EEG)信号进行小波分解,得到六个子带。然后,从每个子带中提取时频域和非线性特征。最后,CNN-GRU-AM 进一步提取特征并进行分类。我们使用 CHB-MIT 数据集来验证所提出的方法。十折交叉验证的结果表明,我们的方法在癫痫发作检测和预测任务中的灵敏度分别为 99.24%和 95.47%,特异性分别为 99.51%和 94.93%,准确性分别为 99.35%和 95.16%,AUC 分别为 99.34%和 95.15%。结果表明,本文提出的方法可以有效地实现癫痫发作的高精度检测和预测,从而提醒患者和医生及时采取保护措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aff/11266650/faf80dc4ec2f/41598_2024_67855_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验