Suppr超能文献

人工智能可为全球粮食安全助力农业:发展中国家面临的挑战与前景

AI can empower agriculture for global food security: challenges and prospects in developing nations.

作者信息

Ahmad Ali, Liew Anderson X W, Venturini Francesca, Kalogeras Athanasios, Candiani Alessandro, Di Benedetto Giacomo, Ajibola Segun, Cartujo Pedro, Romero Pablo, Lykoudi Aspasia, De Grandis Michelangelo Mastrorocco, Xouris Christos, Lo Bianco Riccardo, Doddy Irawan, Elegbede Isa, D'Urso Labate Giuseppe Falvo, García Del Moral Luis F, Martos Vanessa

机构信息

Research Institute for Integrated Coastal Zone Management, Polytechnic University of Valencia, Grau de Gandia, Valencia, Spain.

International Space University, Strasbourg, France.

出版信息

Front Artif Intell. 2024 Apr 25;7:1328530. doi: 10.3389/frai.2024.1328530. eCollection 2024.

Abstract

Food and nutrition are a steadfast essential to all living organisms. With specific reference to humans, the sufficient and efficient supply of food is a challenge as the world population continues to grow. Artificial Intelligence (AI) could be identified as a plausible technology in this 5th industrial revolution in bringing us closer to achieving zero hunger by 2030-Goal 2 of the United Nations Sustainable Development Goals (UNSDG). This goal cannot be achieved unless the digital divide among developed and underdeveloped countries is addressed. Nevertheless, developing and underdeveloped regions fall behind in economic resources; however, they harbor untapped potential to effectively address the impending demands posed by the soaring world population. Therefore, this study explores the in-depth potential of AI in the agriculture sector for developing and under-developed countries. Similarly, it aims to emphasize the proven efficiency and spin-off applications of AI in the advancement of agriculture. Currently, AI is being utilized in various spheres of agriculture, including but not limited to crop surveillance, irrigation management, disease identification, fertilization practices, task automation, image manipulation, data processing, yield forecasting, supply chain optimization, implementation of decision support system (DSS), weed control, and the enhancement of resource utilization. Whereas AI supports food safety and security by ensuring higher crop yields that are acquired by harnessing the potential of multi-temporal remote sensing (RS) techniques to accurately discern diverse crop phenotypes, monitor land cover dynamics, assess variations in soil organic matter, predict soil moisture levels, conduct plant biomass modeling, and enable comprehensive crop monitoring. The present study identifies various challenges, including financial, infrastructure, experts, data availability, customization, regulatory framework, cultural norms and attitudes, access to market, and interdisciplinary collaboration, in the adoption of AI for developing nations with their subsequent remedies. The identification of challenges and opportunities in the implementation of AI could ignite further research and actions in these regions; thereby supporting sustainable development.

摘要

食物和营养是所有生物的一项坚定必需品。具体而言对人类来说,随着世界人口持续增长,充足且高效的食物供应是一项挑战。在这场第五次工业革命中,人工智能(AI)可被视为一项可行的技术,它能让我们更接近实现到2030年零饥饿的目标——联合国可持续发展目标(UNSDG)的目标2。除非解决发达国家和不发达国家之间的数字鸿沟,否则这一目标无法实现。然而,发展中地区和欠发达地区在经济资源方面落后;不过,它们蕴藏着未被开发的潜力,能够有效应对世界人口激增带来的紧迫需求。因此,本研究探讨了人工智能在发展中国家和欠发达国家农业领域的深入潜力。同样,它旨在强调人工智能在农业发展中已被证明的效率和衍生应用。目前,人工智能正被应用于农业的各个领域,包括但不限于作物监测、灌溉管理、疾病识别、施肥实践、任务自动化、图像处理、数据处理、产量预测、供应链优化、决策支持系统(DSS)的实施、杂草控制以及资源利用的提升。人工智能通过确保更高的作物产量来支持食品安全和保障,这是通过利用多时态遥感(RS)技术的潜力来实现的,这些技术能够准确识别不同的作物表型、监测土地覆盖动态、评估土壤有机质的变化、预测土壤湿度水平、进行植物生物量建模以及实现全面的作物监测。本研究确定了发展中国家在采用人工智能时面临的各种挑战,包括资金、基础设施、专家、数据可用性、定制化、监管框架、文化规范和态度、市场准入以及跨学科合作等,并提出了相应的补救措施。识别人工智能实施中的挑战和机遇可以在这些地区引发进一步的研究和行动;从而支持可持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0842/11081032/6c34cd85f89d/frai-07-1328530-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验