Suppr超能文献

揭示精准农业的时空研究趋势:一种基于BERTopic的文本挖掘方法。

Unveiling temporal and spatial research trends in precision agriculture: A BERTopic text mining approach.

作者信息

Liu Yang, Wan Fanghao

机构信息

Murdoch University, Australia.

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

出版信息

Heliyon. 2024 Aug 24;10(17):e36808. doi: 10.1016/j.heliyon.2024.e36808. eCollection 2024 Sep 15.

Abstract

This study leverages the BERTopic algorithm to analyze the evolution of research within precision agriculture, identifying 37 distinct topics categorized into eight subfields: Data Analysis, IoT, UAVs, Soil and Water Management, Crop and Pest Management, Livestock, Sustainable Agriculture, and Technology Innovation. By employing BERTopic, based on a transformer architecture, this research enhances topic refinement and diversity, distinguishing it from traditional reviews. The findings highlight a significant shift towards IoT innovations, such as security and privacy, reflecting the integration of smart technologies with traditional agricultural practices. Notably, this study introduces a comprehensive popularity index that integrates trend intensity with topic proportion, providing nuanced insights into topic dynamics across countries and journals. The analysis shows that regions with robust research and development, such as the USA and Germany, are advancing in technologies like Machine Learning and IoT, while the diversity in research topics, assessed through information entropy, indicates a varied global research scope. These insights assist scholars and research institutions in selecting research directions and provide newcomers with an understanding of the field's dynamics.

摘要

本研究利用BERTopic算法分析精准农业领域内研究的演变,识别出37个不同的主题,这些主题分为八个子领域:数据分析、物联网、无人机、土壤与水资源管理、作物与病虫害管理、畜牧业、可持续农业和技术创新。通过采用基于变压器架构的BERTopic,本研究提高了主题细化和多样性,使其有别于传统综述。研究结果突出了向物联网创新(如安全和隐私)的重大转变,反映了智能技术与传统农业实践的融合。值得注意的是,本研究引入了一个综合流行度指数,该指数将趋势强度与主题比例相结合,为各国和各期刊的主题动态提供了细致入微的见解。分析表明,美国和德国等研发实力雄厚的地区在机器学习和物联网等技术方面取得了进展,而通过信息熵评估的研究主题多样性表明全球研究范围各不相同。这些见解有助于学者和研究机构选择研究方向,并让新手了解该领域的动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5c1/11401027/80e1da8f0a74/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验