Suppr超能文献

基于心电图的深度学习预测和识别药物诱导的 I 型 Brugada 波。

Predicting and Recognizing Drug-Induced Type I Brugada Pattern Using ECG-Based Deep Learning.

机构信息

Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium.

University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu Mureş Târgu Mureş Romania.

出版信息

J Am Heart Assoc. 2024 May 21;13(10):e033148. doi: 10.1161/JAHA.123.033148. Epub 2024 May 10.

Abstract

BACKGROUND

Brugada syndrome (BrS) has been associated with sudden cardiac death in otherwise healthy subjects, and drug-induced BrS accounts for 55% to 70% of all patients with BrS. This study aims to develop a deep convolutional neural network and evaluate its performance in recognizing and predicting BrS diagnosis.

METHODS AND RESULTS

Consecutive patients who underwent ajmaline testing for BrS following a standardized protocol were included. ECG tracings from baseline and during ajmaline were transformed using wavelet analysis and a deep convolutional neural network was separately trained to (1) recognize and (2) predict BrS type I pattern. The resultant networks are referred to as BrS-Net. A total of 1188 patients were included, of which 361 (30.3%) patients developed BrS type I pattern during ajmaline infusion. When trained and evaluated on ECG tracings during ajmaline, BrS-Net recognized a BrS type I pattern with an AUC-ROC of 0.945 (0.921-0.969) and an AUC-PR of 0.892 (0.815-0.939). When trained and evaluated on ECG tracings at baseline, BrS-Net predicted a BrS type I pattern during ajmaline with an AUC-ROC of 0.805 (0.845-0.736) and an AUC-PR of 0.605 (0.460-0.664).

CONCLUSIONS

BrS-Net, a deep convolutional neural network, can identify BrS type I pattern with high performance. BrS-Net can predict from baseline ECG the development of a BrS type I pattern after ajmaline with good performance in an unselected population.

摘要

背景

Brugada 综合征(BrS)与健康人群中的心脏性猝死有关,药物诱导的 BrS 占所有 BrS 患者的 55%至 70%。本研究旨在开发一种深度卷积神经网络,并评估其在识别和预测 BrS 诊断中的性能。

方法和结果

连续纳入按照标准方案接受阿马林试验以诊断 BrS 的患者。采用小波分析对基线和阿马林期间的心电图轨迹进行转换,并分别使用深度卷积神经网络(1)识别和(2)预测 I 型 BrS 模式。所得网络称为 BrS-Net。共纳入 1188 例患者,其中 361 例(30.3%)患者在阿马林输注期间出现 I 型 BrS 模式。当在阿马林期间的心电图轨迹上进行训练和评估时,BrS-Net 识别 I 型 BrS 模式的 AUC-ROC 为 0.945(0.921-0.969),AUC-PR 为 0.892(0.815-0.939)。当在基线心电图轨迹上进行训练和评估时,BrS-Net 预测阿马林期间出现 I 型 BrS 模式的 AUC-ROC 为 0.805(0.845-0.736),AUC-PR 为 0.605(0.460-0.664)。

结论

深度卷积神经网络 BrS-Net 可以高度准确地识别 I 型 BrS 模式。BrS-Net 可以从基线心电图预测阿马林后出现 I 型 BrS 模式,在未选择的人群中具有良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d285/11179812/4526092d525b/JAH3-13-e033148-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验