Sheng Yujie, Chen Zilong, Cherrier Mickael V, Martin Lydie, Bui Tam T T, Li Wei, Lynham Steven, Nicolet Yvain, Ebrahimi Kourosh H
Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France.
Small. 2024 Aug;20(31):e2310913. doi: 10.1002/smll.202310913. Epub 2024 May 10.
Naturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen. Here, a versatile engineering approach is described by mimicking the HIV-1 Gap polyprotein precursor. Various PREcursors of nanoCages (PREC) are designed and created by linking two ferritin subunits via a flexible linker peptide containing a protease cleavage site. These precursors can have additional proteins at their N-terminus, and their protease cleavage generates ferritin-like nanocages named protease-induced nanocages (PINCs). It is demonstrated that PINC formation allows concurrent surface decoration with a protein and hydrophilic or hydrophobic drug encapsulation up to fourfold more than the amount achieved using other methods. The PINCs/Drug complex is stable and efficiently kills cancer cells. This work provides insight into the precursors' design rules and the mechanism of PINCs formation. The engineering approach and mechanistic insight described here will facilitate nanocages' applications in drug delivery or as a platform for making multifunctional therapeutics like mosaic vaccines.
天然存在的蛋白质纳米笼,如铁蛋白,是由多个亚基自组装而成的。由于其独特的笼状结构和生物相容性,人们对其在生物医学领域的应用兴趣与日俱增。目前尚不存在一种通用且直接的工程方法,可利用纳米笼通过包裹亲水性或疏水性药物来制备药物递送系统,以及通过用抗原等蛋白质进行表面功能化来开发疫苗。在此,通过模拟HIV-1 Gap多蛋白前体描述了一种通用的工程方法。通过经由包含蛋白酶切割位点的柔性接头肽连接两个铁蛋白亚基,设计并创建了各种纳米笼前体(PREC)。这些前体在其N端可以有额外的蛋白质,其蛋白酶切割产生铁蛋白样纳米笼,称为蛋白酶诱导纳米笼(PINC)。结果表明,PINC的形成允许同时进行蛋白质表面修饰以及亲水性或疏水性药物包裹,包裹量比使用其他方法所达到的量高出四倍之多。PINC/药物复合物稳定且能有效杀死癌细胞。这项工作为前体的设计规则和PINC形成机制提供了深入见解。本文所述的工程方法和机理见解将促进纳米笼在药物递送中的应用,或作为制备如嵌合疫苗等多功能治疗剂的平台。