Suppr超能文献

基于学习的神经结构搜索与集成方法在 3D 放疗剂量预测中的应用

LENAS: Learning-Based Neural Architecture Search and Ensemble for 3-D Radiotherapy Dose Prediction.

出版信息

IEEE Trans Cybern. 2024 Oct;54(10):5795-5805. doi: 10.1109/TCYB.2024.3390769. Epub 2024 Oct 9.

Abstract

Radiation therapy treatment planning requires balancing the delivery of the target dose while sparing normal tissues, making it a complex process. To streamline the planning process and enhance its quality, there is a growing demand for knowledge-based planning (KBP). Ensemble learning has shown impressive power in various deep learning tasks, and it has great potential to improve the performance of KBP. However, the effectiveness of ensemble learning heavily depends on the diversity and individual accuracy of the base learners. Moreover, the complexity of model ensembles is a major concern, as it requires maintaining multiple models during inference, leading to increased computational cost and storage overhead. In this study, we propose a novel learning-based ensemble approach named LENAS, which integrates neural architecture search with knowledge distillation for 3-D radiotherapy dose prediction. Our approach starts by exhaustively searching each block from an enormous architecture space to identify multiple architectures that exhibit promising performance and significant diversity. To mitigate the complexity introduced by the model ensemble, we adopt the teacher-student paradigm, leveraging the diverse outputs from multiple learned networks as supervisory signals to guide the training of the student network. Furthermore, to preserve high-level semantic information, we design a hybrid loss to optimize the student network, enabling it to recover the knowledge embedded within the teacher networks. The proposed method has been evaluated on two public datasets: 1) OpenKBP and 2) AIMIS. Extensive experimental results demonstrate the effectiveness of our method and its superior performance to the state-of-the-art methods. Code: github.com/hust-linyi/LENAS.

摘要

放射治疗计划需要在为目标组织提供足够剂量的同时保护正常组织,因此这是一个复杂的过程。为了简化规划过程并提高其质量,对基于知识的规划(KBP)的需求日益增长。集成学习在各种深度学习任务中显示出强大的功能,它具有提高 KBP 性能的巨大潜力。然而,集成学习的有效性在很大程度上取决于基学习器的多样性和个体准确性。此外,模型集成的复杂性是一个主要关注点,因为它需要在推理过程中维护多个模型,从而导致计算成本和存储开销增加。在这项研究中,我们提出了一种名为 LENAS 的基于学习的集成方法,该方法将神经架构搜索与知识蒸馏相结合,用于三维放射治疗剂量预测。我们的方法首先从庞大的架构空间中彻底搜索每个块,以识别出具有良好性能和显著多样性的多个架构。为了减轻模型集成带来的复杂性,我们采用了师生范式,利用来自多个学习网络的多样化输出作为监督信号,指导学生网络的训练。此外,为了保留高级语义信息,我们设计了一种混合损失来优化学生网络,使它能够恢复教师网络中嵌入的知识。该方法已在两个公共数据集上进行了评估:1)OpenKBP 和 2)AIMIS。广泛的实验结果证明了我们的方法的有效性及其优于最先进方法的性能。代码:github.com/hust-linyi/LENAS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验