National Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States.
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States.
ACS Infect Dis. 2024 Jun 14;10(6):2032-2046. doi: 10.1021/acsinfecdis.4c00015. Epub 2024 May 10.
SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.
SARS-CoV-2 的刺突(S)蛋白经历广泛的糖基化,有助于正确折叠、增强稳定性,并逃避宿主免疫监视。在这项研究中,我们使用质谱分析来阐明 SARS-CoV-2 奥密克戎变异株(B.1.1.529)重组刺突蛋白的 N-糖基化特征和二硫键形成,与 D614G 刺突变异株进行比较。此外,我们对刺突蛋白进行了微秒级长的分子动力学模拟,以解决不同的 N-聚糖如何影响两种变异株中刺突构象的采样。我们的研究结果表明,奥密克戎刺突蛋白在特定糖基化位点的糖基化处理和二硫键形成方面与 D614G 刺突变异株总体相似。然而,在某些 N-糖基化位点观察到聚糖的改变。这些变化与奥密克戎刺突蛋白内的突变协同作用,导致大分子(包括外域、受体结合域和 N 端域)的表面可及性增加。此外,突变和下拉实验揭示了特定序列(N149)糖基化的作用;此外,MD 模拟和 HDX-MS 的相关性确定了刺突蛋白的几个高动态区域。这些见解有助于我们理解结构与功能之间的相互作用,从而推进有效的疫苗接种和治疗策略。