Suppr超能文献

基于地理空间和人口数据的未来 OHCAs 预测模型:一项观察性研究。

Prediction model for future OHCAs based on geospatial and demographic data: An observational study.

机构信息

Department of Anesthesia and Intensive Care, North Denmark Regional Hospital, Hjoerring, Denmark.

Department of Public Health, University of Copenhagen, København, Denmark.

出版信息

Medicine (Baltimore). 2024 May 10;103(19):e38070. doi: 10.1097/MD.0000000000038070.

Abstract

This study used demographic data in a novel prediction model to identify areas with high risk of out-of-hospital cardiac arrest (OHCA) in order to target prehospital preparedness. We combined data from the nationwide Danish Cardiac Arrest Registry with geographical- and demographic data on a hectare level. Hectares were classified in a hierarchy according to characteristics and pooled to square kilometers (km2). Historical OHCA incidence of each hectare group was supplemented with a predicted annual risk of at least 1 OHCA to ensure future applicability. We recorded 19,090 valid OHCAs during 2016 to 2019. The mean annual OHCA rate was highest in residential areas with no point of public interest and 100 to 1000 residents per hectare (9.7/year/km2) followed by pedestrian streets with multiple shops (5.8/year/km2), areas with no point of public interest and 50 to 100 residents (5.5/year/km2), and malls with a mean annual incidence per km2 of 4.6. Other high incidence areas were public transport stations, schools and areas without a point of public interest and 10 to 50 residents. These areas combined constitute 1496 km2 annually corresponding to 3.4% of the total area of Denmark and account for 65% of the OHCA incidence. Our prediction model confirms these areas to be of high risk and outperforms simple previous incidence in identifying future risk-sites. Two thirds of out-of-hospital cardiac arrests were identified in only 3.4% of the area of Denmark. This area was easily identified as having multiple residents or having airports, malls, pedestrian shopping streets or schools. This result has important implications for targeted intervention such as automatic defibrillators available to the public. Further, demographic information should be considered when implementing such interventions.

摘要

本研究利用人口统计学数据在一个新颖的预测模型中识别出院外心脏骤停(OHCA)风险较高的区域,以便针对院前准备进行目标定位。我们结合了全国丹麦心脏骤停登记处的数据以及每公顷一级的地理和人口统计学数据。根据特征对公顷进行分类,并汇集到平方公里(km2)。每个公顷组的历史 OHCA 发生率补充了至少 1 次 OHCA 的预测年风险,以确保未来的适用性。我们记录了 2016 年至 2019 年期间的 19090 例有效 OHCA。每公顷 100 至 1000 名居民且无公共利益点的住宅区(9.7/年/km2)的年平均 OHCA 发生率最高,其次是有多家商店的步行街(5.8/年/km2),无公共利益点且每公顷 50 至 100 名居民的区域(5.5/年/km2),以及每平方公里平均年发生率为 4.6 的购物中心。其他高发生率地区包括公共交通站、学校和无公共利益点且每公顷 10 至 50 名居民的区域。这些区域每年总计 1496 平方公里,占丹麦总面积的 3.4%,占 OHCA 发生率的 65%。我们的预测模型证实这些区域风险较高,并优于简单的先前发生率来识别未来的风险地点。三分之二的院外心脏骤停发生在丹麦总面积的 3.4%。这些区域很容易识别,因为它们有多个居民或有机场、购物中心、步行街或学校。这一结果对目标干预措施具有重要意义,例如向公众提供自动除颤器。此外,在实施此类干预措施时应考虑人口统计学信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aef/11081540/452f6c999877/medi-103-e38070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验