Suppr超能文献

基于拉曼光谱和多元统计分析的宫颈癌生物标志物筛选。

Cervical cancer biomarker screening based on Raman spectroscopy and multivariate statistical analysis.

机构信息

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Sep 5;317:124402. doi: 10.1016/j.saa.2024.124402. Epub 2024 May 1.

Abstract

Cervical cancer (CC) stands as one of the most prevalent malignancies among females, and the examination of serum tumor markers(TMs) assumes paramount significance in both its diagnosis and treatment. This research delves into the potential of combining Surface-Enhanced Raman Spectroscopy (SERS) with Multivariate Statistical Analysis (MSA) to diagnose cervical cancer, coupled with the identification of prospective serum biomarkers. Serum samples were collected from 95 CC patients and 81 healthy subjects, with subsequent MSA employed to analyze the spectral data. The outcomes underscore the superior efficacy of Partial Least Squares Discriminant Analysis (PLS-DA) within the MSA framework, achieving predictive accuracy of 97.73 %, and exhibiting sensitivities and specificities of 100 % and 95.83 % respectively. Additionally, the PLS-DA model yields a Variable Importance in Projection (VIP) list, which, when coupled with the biochemical information of characteristic peaks, can be utilized for the screening of biomarkers. Here, the Random Forest (RF) model is introduced to aid in biomarker screening. The two findings demonstrate that the principal contributing features distinguishing cervical cancer Raman spectra from those of healthy individuals are located at 482, 623, 722, 956, 1093, and 1656 cm, primarily linked to serum components such as DNA, tyrosine, adenine, valine, D-mannose, and amide I. Predictive models are constructed for individual biomolecules, generating ROC curves. Remarkably, D-mannose of V (C-N) exhibited the highest performance, boasting an AUC value of 0.979. This suggests its potential as a serum biomarker for distinguishing cervical cancer from healthy subjects.

摘要

宫颈癌(CC)是女性最常见的恶性肿瘤之一,检测血清肿瘤标志物(TMs)在其诊断和治疗中具有重要意义。本研究探讨了将表面增强拉曼光谱(SERS)与多元统计分析(MSA)相结合用于诊断宫颈癌的潜力,并确定了潜在的血清生物标志物。采集了 95 例宫颈癌患者和 81 例健康对照者的血清样本,随后采用 MSA 分析光谱数据。结果突出了偏最小二乘判别分析(PLS-DA)在 MSA 框架内的优越效果,预测准确率为 97.73%,灵敏度和特异性分别为 100%和 95.83%。此外,PLS-DA 模型产生了一个变量重要性投影(VIP)列表,结合特征峰的生化信息,可用于生物标志物的筛选。这里引入随机森林(RF)模型来辅助生物标志物的筛选。这两个发现表明,区分宫颈癌拉曼光谱与健康人拉曼光谱的主要特征贡献特征位于 482、623、722、956、1093 和 1656cm,主要与血清成分如 DNA、酪氨酸、腺嘌呤、缬氨酸、D-甘露糖和酰胺 I 有关。为各个生物分子构建预测模型,生成 ROC 曲线。值得注意的是,V(C-N)的 D-甘露糖表现出最高的性能,AUC 值为 0.979。这表明它有潜力作为一种血清生物标志物,用于区分宫颈癌和健康受试者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验